标准的尺取法板子题
尺取法:顾名思义,像尺子一样取一段,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。
题目描述:
有一个长度为N的正整数序列(10 < N < 100,000)(10<N<100,000),每一个数字都小于等于10000,再给定一个正整数S (S < 100,000,000),试求一个连续子序列,使得该序列的数字之和大于或等于S,并且要求该子序列尽量短。
输入输出格式
输入格式:
输入有多组数据。每组数据第一行为两个正整数N和S,中间用空格隔开。第二行给出这个序列,每两个整数之间用空格隔开。输入文件以EOF结尾。当这个连续子序列不存在时输出0
输出格式:
对于每组数据,输出一个整数,代表满足要求的最短子序列的长度。每组数据输出占一行。
输入输出样例
输入样例:
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5
输出样例:
2
3
思路
1.定义i,j为左右端点。
2.遍历j,直到满足条件:i,j之间的值之和大于等于S,更新区间长度;
3.不满足2条件则继续j++;
4.将左端点i+1,逐渐缩短区间长度,以求得最小值,回到第2步。
#include <bits/stdc++.h>
using namespace std;
long long a[100001],h[100001];
inline int read() {
int x = 0,f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
int main() {
int n,s;
while (cin >> n >> s) {
memset(a,0,sizeof(a));
memset(h,0,sizeof(h));
for (int i = 1;i <= n;i++) {
a[i] = read();
h[i] = h[i - 1] + a[i];
}
int l = 1e8,i = 1;
for (int j = 1;j <= n;j++) {
if (h[j] - h[i - 1] < s) j++;
else {
l = min(j - i + 1,l);
i++;
while (i <= j && h[j] - h[i - 1] >= s) {/*进一步缩短距离*/
l = min(j - i + 1,l);
i++;
}
}
if (i > j) break;
}
if (l == 1e8) l = 0;
cout << l << endl;
}
return 0;
}