张吕敏最新开源的 FramePack 带来了颠覆性解决方案!作为一种下一代视频生成框架,通过智能压缩输入帧上下文,让视频扩散模型的计算瓶颈与视频长度 “脱钩”,即使在消费级显卡上也能用 13B 大模型生成 1 分钟高清视频(1800 帧仅需 6GB 显存)。 在4090显卡上的生成速度约 2.5 秒/帧,如果使用teacache优化,则可降低到 1.5 秒/帧。
官方实现已在 GitHub 开源,附带一键整合包,无论是开发者还是普通用户都能轻松上手。
核心亮点
- 算力门槛低:6GB 显存跑 13B 模型
传统视频模型随帧数增加计算量呈指数级增长,而 FramePack 通过几何级数压缩技术,将输入帧的上下文长度控制在固定范围(如 13B 模型处理 1800 帧仅需 6GB 显存),笔记本 GPU(如 RTX 3060 移动版)也能轻松胜任,彻底告别 “算力焦虑”。
- 抗遗忘 + 抗漂移:双向导航让视频不 “跑偏”
抗遗忘:按帧重要性分级压缩(近帧详细、远帧简化),让模型记住关键细节,避免长时间生成时 “丢帧”。
抗漂移:采用逆时间顺序生成(从终点倒推中间帧)和双向上下文参考,像 “双向导航” 一样校准生成路径,杜绝画质随时间下降的问题。
- 训练推理双高效:比肩图像扩散的体验
训练时支持超大批次(batch size 与图像扩散模型相当),推理时实时预览生成进度,每生成一段就能看到预览,告别漫长等待。官方戏称:“视频扩散,终于有了图像扩散的丝滑感。”
生成结果展示
-
根据起始帧生成5秒视频(30FPS,150帧)
frame_pack_5s
-
根据起始帧生成60秒视频(30FPS,1800帧)
frame_pack_60s
6GB显存,能生产这样的效果,只能用一个字形容很强,更多生成效果,可去官方页面查看:
https://lllyasviel.github.io/frame_pack_gitpage/
技术路线
- 压缩引擎:FramePack 的核心算法
对输入帧按时间远近分级,近帧用小尺寸补丁(如 1x2x2)精细处理,远帧用大尺寸补丁(如 8x8x8)压缩,总上下文长度收敛到固定值(如 λ=2 时,总长度为常数),算力消耗不再随帧数增长。
支持多种压缩策略(如对称压缩、重点帧优先),适配图像转视频、文本转视频等不同场景。
- 反漂移采样:双向生成校准误差
传统方法按顺序生成易累积误差,FramePack 则先确定 “起点 / 终点关键帧”,再从两端向中间填充,或逆序生成(从最后一帧倒推前一帧),每次生成都向已知高质量帧 “对齐”,大幅降低画质漂移。
- 兼容性:微调现有模型
可直接微调现有视频扩散模型(如 HunyuanVideo、Wan),通过更平衡的扩散调度器(低流移时间步)提升画质,无需重构整个架构。
源码部署
硬件要求
- GPU:RTX 30XX/40XX/50XX 系列(支持 fp16/bf16),最低 6GB 显存(如 RTX 3060 移动版)。
- 系统:Windows/Linux。
快速上手步骤
- Windows 一键安装(推荐新手):
整合包官方下载地址(需要魔法,不支持50系显卡):https://github.com/lllyasviel/FramePack/releases/download/windows/framepack_cu126_torch26.7z
没有魔法的话,建议直接去下载我提供的整合包,已包含模型,免HF登录,且支持50系显卡
解压后运行update.bat
更新,再用run.bat
启动,会自动下载 30GB 模型(从 HuggingFace),首次启动稍慢。
如果出现HF登录失败的错误,请去HuggingFace官网申请Token,然后添加环境变量HF_TOKEN,设置值为你申请的Token。也可以输入如下命令设置:
$env:HF_TOKEN="*******************" # 替换为你申请的
下载时模型需要魔法,没有的话,请输入以下命令以使用HF镜像
$env:HF_ENDPOINT = "https://hf-mirror.com"
如果想在50系显卡上运行,请进入整合包文件夹,输入以下命令升级pytorch
.\system\python\python -m pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128 -U
- Linux 手动部署(适合开发者):
创建 Python 3.10 环境,安装 PyTorch(CUDA 12.6):
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
pip install -r requirements.txt
python demo_gradio.py --share # 启动GUI,支持公网访问
打开后GUI如下:
代码地址:https://github.com/lllyasviel/FramePack
论文地址:https://arxiv.org/abs/2504.12626
关注【或问AI】公众号,回复关键词【FramePack】获取模型和整合包