Leetcode 1240:铺瓷砖(超详细的解法!!!)

你是一位施工队的工长,根据设计师的要求准备为一套设计风格独特的房子进行室内装修。

房子的客厅大小为 n x m,为保持极简的风格,需要使用尽可能少的 正方形 瓷砖来铺盖地面。

假设正方形瓷砖的规格不限,边长都是整数。

请你帮设计师计算一下,最少需要用到多少块方形瓷砖?

示例 1:

输入:n = 2, m = 3
输出:3
解释:3 块地砖就可以铺满卧室。
     2 块 1x1 地砖
     1 块 2x2 地砖

示例 2:

输入:n = 5, m = 8
输出:5

示例 3:

输入:n = 11, m = 13
输出:6

提示:

  • 1 <= n <= 13
  • 1 <= m <= 13

解题思路

这是一个经典的问题,该问题源自这篇论文Tiling a rectangle with the fewest squares。当然我们这里肯定不会这么复杂的去做,这里给出两种解法。

首先考虑dfs的解法,也就是一行一行的去枚举可以放的矩形,例如:

此时我们将第一行的所有矩形都确定了,接着考虑第二行的矩形,那么这里应该是从绿色(第2个)下面开始放,然后再放紫色的(第4个),也就是从最低高度开始放。当所有矩形的高度都是大矩形的高度n时,那么此时摆放成功,记录结果。为了记录每个矩形的高度,我们需要开辟m大小的数组(记录每个位置的高度)。对于第一个例子,最后记录(最后一层)的就是[1,2,2]。需要注意的是,我们实际放正方形的时候采用贪心策略(从最大的开始放),所以并不会出现上图中的情形。

最后代码非常简洁:

class Solution:
    def tilingRectangle(self, n: int, m: int) -> int:
        res = m * n    
        def dfs(ht, moves):
            if all(h == n for h in ht):
                res = min(res, moves)
                return
            if moves >= res
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值