给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
解题思路
很多人第一眼看到这个问题,想到的第一种做法就是使用贪心算法,但是对于这个问题是不适用的,例如:
12 = 9 + 1 + 1 + 1
我们根据题目中完全平方数的个数最少,我们在什么算法中用到过最少这个关键字?啊哈!最短路径问题。那么和这个问题有什么联系呢?

现在我们就可以用最短路径算法来解决这个问题。最短路径算法其实就是图的广度优先遍历。例如对于上图中的5
,我们要前往0
,我们的第一步有两种走法,先走4
和先走1
。所以我们需要建立一个队列或者栈,然后将第一步的走法压入队列或者栈中。如下(使用队列, 我们同时记录走的步数)
q : (4, 1) (1, 1)
我们将4
出队,然后看4
的下一步怎么走,发现只能走3
,所以我们将(3, 2)
入队
q : (1, 1) (3, 2)
接着我们将(1, 1)
弹出,我们看1
的下一步怎么走,发现只能走0
,这个时候我们发现已经到达了0
,那么我们更新step+1
,然后出循环即可。以下是代码的全部过程:
class Solution:
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
q = list()
q.append([n, 0])
visited = [False for _ in range(n+1)]
visited[n] = True
while any(q):
num, step = q.pop(0)
i = 1
tNum = num - i**2
while tNum >&