题目描述
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:、
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
思路
dp[n] 表示以n为和的最少平方的和的个数(所求)。
dp 数组所有下标已经为完全平方数的数(如1,4,9...)置为 1,加一层 j 遍历找到当前 i 下长度最小的组合。
动态方程的意思是:对于每个 i ,比 i 小一个完全平方数的那些数中最小的个数+1就是所求,也就是 dp [ i - j * j ] + 1 。
代码
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,INT_MAX);
for(int i=1; i*i<=n; i++)
dp[i*i] = 1;
for(int i=1; i<=n; i++){
for(int j=1; j*j<i; j++){
dp[i] = min(dp[i], dp[i-j*j]+1);
}
}
return dp[n];
}
};