【LeetCode】279. 完全平方数

题目描述

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:、

输入: n = 12
输出: 3 
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

 

思路

dp[n] 表示以n为和的最少平方的和的个数(所求)。

dp 数组所有下标已经为完全平方数的数(如1,4,9...)置为 1,加一层 j 遍历找到当前 i 下长度最小的组合。

动态方程的意思是:对于每个 i ,比 i 小一个完全平方数的那些数中最小的个数+1就是所求,也就是 dp [ i - j * j ] + 1 。

 

代码

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1,INT_MAX);
        for(int i=1; i*i<=n; i++)
            dp[i*i] = 1;
        for(int i=1; i<=n; i++){
            for(int j=1; j*j<i; j++){
                dp[i] = min(dp[i], dp[i-j*j]+1);
            }
        }
        return dp[n];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值