在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
解题思路
这个问题非常有意思,首先我们可以很快的判定出是否存在答案。我们只需要将所有的gas - cost
累加,如果结果小于0
,自然就不会存在解了。现在我们的问题就变成了如何判定起始位置。首先我们知道我们的起始点一定gas - cost>0
,并且我们在gas-cost
累加的过程中不能出现负数。对于第一点很好理解,因为如果小于零的话,我们就无法出发。对于第二点,如果中途出现负数的话,那么就表示我们无法到达最后一个将和变成负数的点的位置。这个累加的过程让我联想起了波形的变化

此时我们将波形联系成gas-cost
不断累加的结果,这个结果有正有负。

我们需要我们的波形不出现负数,那么只需要将整个波形向上平移即可。那么我们需要向上平移多少呢?我们只需要知道整个波形的最小值即可。那么我们最后的问题的就变成了求累加过程的最小值,我们从最小值的下一个位置出发即可(为什么是下一个位置?因为当前最小值的位置必然gas-cost<0
)。
class Solution:
def canCompleteCircuit(self, gas, cost):
"""
:type gas: List[int]
:type cost: List[int]
:rtype: int
"""
res = -1
all_sum, min_sum = 0, float('inf')
n = len(gas)
for i in range(n):
all_sum += gas[i] - cost[i]
if min_sum > all_sum:
min_sum = all_sum
res = (i + 1)%n
if all_sum < 0:
return -1
return res
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!