1.题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。
输入描述:
{2,3,4,2,6,2,5,1} ,3
输出描述:
{4,4,6,6,6,5}
解析:
存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5};
针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个:
{[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
2.解题思路
我们可以使用双向队列(Linklist),队列中只存放当前元素的下标,
(1)设新来的元素为k,如果前面的元素比k小,直接把前面的删除(因为不可能成为后面窗口的最大值) (2)如果前面的元素比k大,判断是否还在窗口范围内,不在则移除
以数组{2,3,4,2,6,2,5,1}为例
数组的第一个数字是2,把它存入队列中。 第二个数字是3,比2大,所以2不可能是滑动窗口中的最大值,因此把2从队列里删除,再把3存入队列中。 第三个数字是4,比3大,同样的删3存4。 此时滑动窗口中已经有3个数字,而它的最大值4位于队列的头部。 第四个数字2比4小,但是当4滑出之后它还是有可能成为最大值的,所以我们把2存入队列的尾部。 第五个数字是6,比4和2都大,删4和2,存6。就这样依次进行,最大值永远位于队列的头部。
3.代码
public static ArrayList<Integer> maxInWindows(int [] num, int size) {
ArrayList<Integer> arr = new ArrayList<>();
if (num==null)
return arr;
if (num.length<size||size<=0)
return arr;
Deque<Integer> queue = new LinkedList<>();
for (int i = 0; i<num.length; i++){
//如果前面的数比插入的数小,直接把前面删除(因为不可能成为后面窗口的最大值)
while (!queue.isEmpty()&&num[i]>=num[queue.getLast()])
queue.pollLast();
//如果前面的元素比k大,判断是否还在窗口范围内,不在则移除
//(i-(size-1))即滑动窗口最左侧的坐标索引
while (!queue.isEmpty()&&queue.getFirst()<i-(size-1))
queue.pollFirst();
//加入队尾
queue.offerLast(i);
if (i+1>=size)
arr.add(num[queue.getFirst()]);
}
return arr;
}