剑指offer_【65】矩阵中的路径

1.题目描述

请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。
例如
a b c e
s f c s
a d e e
这样的3 * 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。

2.解题思路

回溯法

  • (1)在矩阵中任选一个格子作为路径的起点。假设矩阵中某个格子的字符为ch,那么这个格子不可能处在路径上的第i个位置。如果路径上的第i个字符不是ch,那么这个格子不可能处在路径上的第i个位置。如果路径上的第i个字符正好是ch,那么往相邻的格子寻找路径上的第i+1个字符。除在矩阵边界上的格子之外,其他格子都有4个相邻的格子。重复这个过程直到路径上的所有字符都在矩阵中找到相应的位置。
      由于回溯法的递归特性,路径可以被开成一个栈。当在矩阵中定位了路径中前n个字符的位置之后,在与第n个字符对应的格子的周围都没有找到第n+1个字符,这个时候只要在路径上回到第n-1个字符,重新定位第n个字符。
      需要判断这个矩阵中的每一个结点是否可以走一条路径,在走的过程中,设置一个和矩阵大小相同的整型数组flag表示是否已经访问,如果某个结点访问了,那么该结点的是否访问则为1。每次遍历一个结点的时候,递归的方式分别向左、向右、向上、向下。
3.代码
public  class Solution {

    public  boolean hasPath(char[] matrix, int rows, int cols, char[] str)    {
        int[] flag = new int[matrix.length];
        for(int i = 0; i < rows; i ++){
            for(int j = 0; j < cols; j ++){
                if(helper(matrix, rows, cols, i, j, str, 0, flag)){
                    return true;
                }
            }
        }
        return false;
    }
    public  boolean helper(char[] matrix, int rows, int cols, 
                      int i, int j, char[] str, int k, int[] flag){
        int index = i * cols + j;       
        if(i < 0 || i >= rows || j < 0 || j >= cols 
                || matrix[index] != str[k] || flag[index] == 1){
            /// /下标不符合,index对应的值不为和字符数组中的不一致,或者该index已经被访问,这些情况只要有符合的就返回false
            // 只有上面的所有情况都不符合,也就是值相等,且没有访问过,下标不符合
            return false;
        }
        if(k == str.length - 1){
            return true;
        }
        flag[index] = 1;
        
       if(helper(matrix, rows, cols, i - 1, j, str, k + 1, flag)//左
          ||helper(matrix, rows, cols, i + 1, j, str, k + 1, flag)//右
          ||helper(matrix, rows, cols, i, j - 1, str, k + 1, flag)//上
          ||helper(matrix, rows, cols, i , j + 1, str, k + 1, flag))//下  
        {
            return true;
        }
        flag[index] = 0;
        return false;
    }
  }
  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值