1.题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。
例如
a b c e
s f c s
a d e e
这样的3 * 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
2.解题思路
回溯法
- (1)在矩阵中任选一个格子作为路径的起点。假设矩阵中某个格子的字符为ch,那么这个格子不可能处在路径上的第i个位置。如果路径上的第i个字符不是ch,那么这个格子不可能处在路径上的第i个位置。如果路径上的第i个字符正好是ch,那么往相邻的格子寻找路径上的第i+1个字符。除在矩阵边界上的格子之外,其他格子都有4个相邻的格子。重复这个过程直到路径上的所有字符都在矩阵中找到相应的位置。
由于回溯法的递归特性,路径可以被开成一个栈。当在矩阵中定位了路径中前n个字符的位置之后,在与第n个字符对应的格子的周围都没有找到第n+1个字符,这个时候只要在路径上回到第n-1个字符,重新定位第n个字符。
需要判断这个矩阵中的每一个结点是否可以走一条路径,在走的过程中,设置一个和矩阵大小相同的整型数组flag表示是否已经访问,如果某个结点访问了,那么该结点的是否访问则为1。每次遍历一个结点的时候,递归的方式分别向左、向右、向上、向下。
3.代码
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
int[] flag = new int[matrix.length];
for(int i = 0; i < rows; i ++){
for(int j = 0; j < cols; j ++){
if(helper(matrix, rows, cols, i, j, str, 0, flag)){
return true;
}
}
}
return false;
}
public boolean helper(char[] matrix, int rows, int cols,
int i, int j, char[] str, int k, int[] flag){
int index = i * cols + j;
if(i < 0 || i >= rows || j < 0 || j >= cols
|| matrix[index] != str[k] || flag[index] == 1){
/// /下标不符合,index对应的值不为和字符数组中的不一致,或者该index已经被访问,这些情况只要有符合的就返回false
// 只有上面的所有情况都不符合,也就是值相等,且没有访问过,下标不符合
return false;
}
if(k == str.length - 1){
return true;
}
flag[index] = 1;
if(helper(matrix, rows, cols, i - 1, j, str, k + 1, flag)//左
||helper(matrix, rows, cols, i + 1, j, str, k + 1, flag)//右
||helper(matrix, rows, cols, i, j - 1, str, k + 1, flag)//上
||helper(matrix, rows, cols, i , j + 1, str, k + 1, flag))//下
{
return true;
}
flag[index] = 0;
return false;
}
}