一道简单题引发的思考

请添加图片描述

☘前言☘

其实好久都不写算法相关的题目了,最近某群友问了一道简单题,但是一时没想起来,后来深入思考了一下进行一下记录。

🧑🏻作者简介:一个从工业设计改行学嵌入式的年轻人
✨联系方式:2201891280(QQ)
全文大约阅读时间: 20min



题目描述

在NxM的方格中,以左上角格子为起点,右下角格子为终点,每次只能向下走或者向右走,请问一共有多少种不同的走法给定两个正整数int n,int m,请返回走法数目。
注:空间复杂度最好为O(n)
(是一道面试题,没找到出处。)


解法一

思路

第一反应就是动态规划,但是要求空间复杂度为O(n)不能使用矩阵了,但是看规律,每个格子的路径数目等于上面一个和左面一个的路径和,如果做压缩为一维的话,可以看作,每个都是前一个和当前格子的和

代码

#include<stdio.h>
#include<string.h>

int count(int m, int n){
    int tmp[n];
    memset(tmp,0,sizeof(tmp));
    for(int i = 0;i < n;++i)    tmp[i] = 1;
    for(int i = 1;i < m;++i)
        for(int j = 1;j < n;++j)
            tmp[j] += tmp[j-1];
    return tmp[n-1];
}

int main(){
    int m,n;
    scanf("%d %d",&m,&n);
    printf("%d\n",count(m,n));
    return 0;
}

大概就是上面的样子。


解法二

思路

这是个美丽的意外,我以为这道题是要求时间复杂度为O(n),这个事就复杂起来了,我第一反应是可重复排列组合数,但是没那么复杂,其实就是要走到右下角一定要走 m − 1 + n − 1 m-1+n-1 m1+n1步,其中有 n − 1 n-1 n1步是要向右走的,那么按照排列组合的方式就是 ( n − 1 m + n − 2 ) \binom{n-1}{m+n-2} (m+n2n1),如果按照这个公式计算的话就是 ( m + n − 2 ) . . . ( m ) ( n − 1 ) ! \frac{(m+n-2)...(m)}{(n-1)!} (n1)!(m+n2)...(m)
复杂度就可以做到O(n),唯一的问题是可能超范围,所以要开大点用longlong。

代码

#include<iostream>
#include<string.h>
using namespace std;

int count(int m, int n){
    long long ans = 1;
    for(int i = m;i < m+n-1;i++)
        ans *= i;
    for(int i = n - 1;i;i--)
        ans /= i;
    return ans;
}

int main(){
    int m,n;
    while(cin>>m>>n)
        cout<<count(m,n)<<endl;
    return 0;
}

后记

今天就到这里了,这个系列不定时更新,主要看我有没有遇到我赶兴趣的0.0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XingleiGao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值