在高等数学中,给出一个函数的收敛半径和收敛域,并将其展成幂级数是一种常见的题型。有些函数自身不算复杂,但对应的幂级数运算量比较恐怖,让很多人不愿进行计算,下面这道题就是一个典型的例子:
解决此问题也非常简单,记住的幂级数,并通过换元将
的分母转化为这样的形式,标准的解题过程参考如下:
这道题目不算特别难,但给人以启迪,至少有以下两点:
1.在数学学习中,运算能力是不可或缺的,看到一堆冗长的表达式就萌生退意是无法学好数学的。而在化简多个收敛的幂级数时,先考察每个幂级数从哪个幂次开始,取起始幂次的最大值,对于具有公共幂次的部分,直接合并同类型;没有公共幂次的部分则单独提取,最后检查系数能不能用同一个表达式进行统一。
2.善于联想和构造是求解诸多数学问题的核心能力,它包括把陌生的转化为熟悉的、把复杂的转化为简单的、把生僻的转化为常见的!