python-numpy.array中,any()和all()方法介绍

0.摘要

本文主要介绍numpy.array.any()和numpy.array.all()的用法和区别。

 

1.np.array.any()和numpy.array.all()

np.array.any()是操作,任意一个元素为True,输出为True。

np.array.all()是操作,所有元素为True,输出为True。

import numpy as np
arr1 = np.array([0,1,2,3])
print(arr1.any())   # True
print(arr1.all())   # False
import numpy as np

arr2 = np.array([True,True,True])
print(arr2.any())   # True
print(arr2.all())   # True

 

 

2.运用:判断np.array是否相等

首先,我们看一下list和np.array的区别:

lst1 = [1,3,5,7,9]
lst2 = [2,4,6,8,10]
print(lst1 == lst2)
#result:False
import numpy as np 

arr1 = np.arange(10)
arr2 = np.arange(10)
print(arr1 == arr2)
#result:[ True  True  True  True  True  True  True  True  True  True]

可以看出:用 “=” 判断两个list 是否相同,返回的是True或False,而np.array返回的是每个元素值比较的列表。

那么如何比较两个np.array,而不是其中的元素呢?

arr1 = np.arange(10)
arr2 = np.arange(10)
print((arr1 == arr2).all())
#result:True

arr1 == arr2返回的仍然是np.array类型的数组,因此,再通过.all()方法即可判断arr1、arr2是否相等。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页