Swift Mac开发--在程序内调用Shell命令及过程记录

我这个月想要在Mac上写汇编语言,用的是NASM的编译器,但是Mac上没有好的、简单专一的、带有编译功能的IDE,就算是有也得要安装虚拟机,这点让我感觉很不爽,无奈之下只能自己写一个带有编译功能的IDE。

我使用的Shell调用的代码

import Foundation
 
@discardableResult
func runShell(_ args: [String]) -> String {
    
    let task = Process()
    task.launchPath = "/bin/zsh"
    task.arguments = args

    let pipe = Pipe()
    task.standardOutput = pipe
    task.launch()
    task.waitUntilExit()

    let data = pipe.fileHandleForReading.readDataToEndOfFile()
    let output: String = NSString(data: data, encoding: String.Encoding.utf8.rawValue)! as String
    
    return output;
}

在主程序里的代码如下

let ShellCommand = "nasm -f bin " + Openfilepath
//runShell(["sudo -s"])
runShell([ShellCommand])

这里需要解释一下,完整的ShellCommand如下

nasm -f bin /Users/william_kuang/Desktop/SaturnOS/source/ipl1.asm

这里我调用了系统里的nasm编译器来编译文件

但是我遇到了一个问题:在这里插入图片描述
我碰到了这个报错,告诉我can't open input file
难不成是我的程序有问题?我又把后面的命令复制了出来在系统的Terminal里面运行了一下结果如下:
在这里插入图片描述
是能够正常运行报错的,这就让我感到很是疑惑,难不成是没有权限读取?

得,改一下调用命令的程序以及命令本身

@discardableResult
func runShell(_ command: String) -> String {
    
    let task = Process()
    let pipe = Pipe()
    
    task.standardOutput = pipe
    task.standardError = pipe
    task.arguments = [command]
    task.launchPath = DATAModel.NasmData.ShellPath
    task.launch()
    
    let data = pipe.fileHandleForReading.readDataToEndOfFile()
    let output = String(data: data, encoding: .utf8)!
    
    return output
}

在原有的命令前加上sudo,再试一下还是不行

这里将task.arguments = [command]改为task.arguments = ["-c",command]

再运行一下看看效果
在这里插入图片描述
说明还是奏效了,但是又出新问题了,为啥 Operation not permitted

网上找了好久,发现是新系统的问题,貌似好多人在电脑升级为Big Sur版本之后都会出现这个提示,这里需要为软件添加权限

在这里插入图片描述
这样权限问题就不会再遇到了,我再试一下
在这里插入图片描述
还是不行,这里我就需要从头考虑一下问题应该要如何解决了

希望有大佬能够帮我解决这个问题!!万分感谢!!


后续我会在后文继续更新解决方案

--------2021 03 16更新--------

终于解决了这个问题了,在一位大佬的帮助下解决的,ID 红瓤大柚子
这个是ta的CSDN,大家多去转转哈
https://blog.csdn.net/u011865919

这里先放出程序代码

import Foundation
import Cocoa
import Combine
import ArgumentParser

/*-------------------------------------------------------------
*
*   通过调用nasm编译器来完成汇编文件的编译
*
*   输入:command【命令行内容】
*   输入:outputpath【编译完成之后的文件输出地址】
*
*   返回:返回当前指令的运行情况
*
*   创建日期:2021-01-22
*
-------------------------------------------------------------*/


func runShell(_ command: String,_ outputpath: String) -> String {
    let launch_path = DATAModel.NasmData.nasmcompath
    let task = Process()
    let pipe = Pipe()
    
    task.standardOutput = pipe
    task.standardError = pipe
    task.arguments = ["-f","macho64",command,"-o",outputpath]
    task.launchPath = launch_path
    task.launch()
    
    let data = pipe.fileHandleForReading.readDataToEndOfFile()
    let output = String(data: data, encoding: .utf8)!
    
    return output
}

arguments的指令都要用“”和,来进行分割,并且输出地址得要改到/tmp下,大佬在帮我改程序
这样就解决了指令报错和文件权限的问题。

总之还是得要多学一些基础知识才能知道问题出现在了哪里,不然就会像我这样卡半个多月。这里再次感谢大佬的支援!!!

大佬的空间: 红瓤大柚子
这个是ta的CSDN,大家多去看看哈
https://blog.csdn.net/u011865919

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值