5024.除数博弈
题目描述
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N
。在每个玩家的回合,玩家需要执行以下操作:
- 选出任一
x
,满足0 < x < N
且N % x == 0
。 - 用
N - x
替换黑板上的数字N
。
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True
,否则返回 false
。假设两个玩家都以最佳状态参与游戏。
示例1:
输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。
示例2:
输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。
解题思路
如果当前数N对于爱丽丝先手为胜,则对于爱丽丝后手则为负,故对于一个新的数N,爱丽丝需要选择一个合适的除数x,使得N-x后新的N对鲍勃来说为负,如此方可胜利。
因此,对于N
,遍历N
的除数,然后判断N-x
的结果是否为负,若存在一个x
,使得N-x
为胜,则爱丽丝可以获胜。
现已知N=2
时,爱丽丝胜,N=3
时,爱丽丝负。则当N=4
时,满足要求的除数有1
和2
。当爱丽丝选择1
时,N=N-1=3
。因为N=3
时,先手的无论怎么选,都是负,因此鲍勃一定输。因此爱丽丝选1时会胜。当爱丽丝选择2
时,N=N-2=2
,N=2
时,先手的一定胜,故鲍勃一定会胜,因此爱丽丝负。故可知,N=4
时,爱丽丝会获胜。以此类推即可。
参考代码
class Solution:
def divisorGame(self, N: int) -> bool:
n=[False,False,True,False]
if N<4:
return n[N]
else:
for i in range(4,N+1):
ans=False
for j in range(1,i):
if i%j==0:
ans=ans or (not n[i-j])
n.append(ans)
return n[N]
5030.节点与其祖先之间的最大差值
题目描述
给定二叉树的根节点 root
,找出存在于不同节点 A
和 B
之间的最大值 V
,其中 V = |A.val - B.val|
,且 A
是 B
的祖先。(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)
示例:
输入:[8,3,10,1,6,null,14,null,null,4,7,13]
输出:7
解释:
我们有大量的节点与其祖先的差值,其中一些如下:
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。
提示:
- 树中的节点数在
2
到5000
之间。 - 每个节点的值介于
0
到100000
之间。
解题思路
从根节点开始,同时遍历左子树和右子树。用两个变量记录之前层的最大值和最小值,返回这一层和之前的最大值最小值运算后的最大的差值,同时,更新到这一层为止的最大值和最小值,最终即可得到结果。
参考代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int work(TreeNode* root,int ma,int mi)
{
if(root==nullptr)return 0;
int ans=max(ma-root->val,root->val-mi);
ma=max(ma,root->val);
mi=min(mi,root->val);
ans=max(ans,max(work(root->left,ma,mi),work(root->right,ma,mi)));
return ans;
}
int maxAncestorDiff(TreeNode* root) {
return work(root,-100000,100000);
}
};
5025.最长等差数列
题目描述
给定一个整数数组 A,返回 A 中最长等差子序列的长度。
回想一下,A
的子序列是列表 A[i_1], A[i_2], ..., A[i_k]
其中 0 <= i_1 < i_2 < ... < i_k <= A.length - 1
。并且如果 B[i+1] - B[i]( 0 <= i < B.length - 1)
的值都相同,那么序列 B
是等差的。
示例1:
输入:[3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例2:
输入:[9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例3:
输入:[20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
提示:
2 <= A.length <= 2000
0 <= A[i] <= 10000
解题思路
如果A的长度小于3,则直接返回A的长度。否则,默认初始长度为2,遍历A。对于每个数,计算其与后面数的公差,如果存在一个等差序列,则记录其长度。最后返回最长的序列即可。具体实现见参考代码。
参考代码
class Solution {
public int longestArithSeqLength(int[] A) {
int ALen = A.size();
if (ALen < 3)
return ALen;
int maxLen = 2;
for (int i = 0; i < ALen-1; i++) {
for (int j = i+1; j < ALen; j++) {
int diff = A[j] - A[i];
int prev = A[j];
int count = 2;
for (int k = j+1; k < ALen; k++) {
if (A[k] == prev + diff){
count++;
prev += diff;
}
}
if (count > maxLen){
maxLen = count;
}
}
}
return maxLen;
}
};
5031.从先序遍历还原二叉树
我们从二叉树的根节点 root
开始进行深度优先搜索。
在遍历中的每个节点处,我们输出 D
条短划线(其中 D
是该节点的深度),然后输出该节点的值。(如果节点的深度为 D
,则其直接子节点的深度为 D + 1
。根节点的深度为 0
)。
如果节点只有一个子节点,那么保证该子节点为左子节点。
给出遍历输出 S
,还原树并返回其根节点 root
。
示例1:
输入:"1-2--3--4-5--6--7"
输出:[1,2,5,3,4,6,7]
示例2:
输入:"1-2--3---4-5--6---7"
输出:[1,2,5,3,null,6,null,4,null,7]
示例3:
输入:"1-401--349---90--88"
输出:[1,401,null,349,88,90]
提示:
- 原始树中的节点数介于
1
和1000
之间。 - 每个节点的值介于
1
和10 ^ 9
之间。
解题思路
首先,解析字符串,获取每个节点的数值和深度。
随后由上至下,根据节点的深度建立树。
具体实现配合参考代码讲解
参考代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int a[1005]={0},d[1005];
TreeNode* work(int l,int r)
{
if(l>r)return nullptr;
TreeNode* root=new TreeNode(a[l]);
if(l==r)return root;
int mid;
for(mid=l+2;mid<=r;mid++)if(d[mid]==d[l]+1)break;
root->left=work(l+1,mid-1);
root->right=work(mid,r);
return root;
}
TreeNode* recoverFromPreorder(string S) {
int i,j,m=S.size(),n;
for(i=n=0;i<S.size();)
{
for(j=0;S[i]=='-';i++,j++);
d[++n]=j;
for(;i<S.size()&&S[i]>='0'&&S[i]<='9';i++)a[n]=(a[n]<<3)+(a[n]<<1)+(S[i]^'0');
}
return work(1,n);
}
};
其中:
int a[1005]={0},d[1005];
a用于记录节点的值,b用于记录节点的深度。
分析主函数:
TreeNode* recoverFromPreorder(string S) {
int i,j,m=S.size(),n;
for(i=n=0;i<S.size();)
{
for(j=0;S[i]=='-';i++,j++);
d[++n]=j;
for(;i<S.size()&&S[i]>='0'&&S[i]<='9';i++)
a[n]=(a[n]<<3)+(a[n]<<1)+(S[i]^'0');
}
return work(1,n);
}
其中,n用于记录节点数目。
for循环用于解析字符串。如果遇到的是’-’,则j增加,当循环条件不满足时,记录节点的深度。
当遇到数字时,当前节点的值通过如下方式计算:
- 先将a[n]上现有数字扩大十倍。这里扩大的方法是将一个数变为其八倍加其二倍,而八倍和二倍都可以通过左移运算进行。这样极大的提高了运算速度。
- 随后,通过异或运算将字符串转换为数值。
接下来分析核心部分:
TreeNode* work(int l,int r)
{
if(l>r)return nullptr;
TreeNode* root=new TreeNode(a[l]);
if(l==r)return root;
int mid;
for(mid=l+2;mid<=r;mid++)if(d[mid]==d[l]+1)break;
root->left=work(l+1,mid-1);
root->right=work(mid,r);
return root;
}
其中的mid是判断下一层的下一层的起点。每次建立一个节点,随后递归建立其左子树和右子树。