图形学学习
我是赛赛
辣鸡大学生
展开
-
python图像处理笔记-十二-图像聚类
python图像处理笔记-十二-图像聚类学习内容这一章主要在学习的是聚类算法以及其在图像算法中的应用,主要学习的聚类方法有:KMeans层次聚类谱聚类并将使用他们对字母数据及进行聚类处理,以对比效果。聚类是什么?有n个点,把这n个点通过某种方法分成k类就是聚类算法在做的事情,聚类做的越好,分出来的k类的类与类之间差异越明显,同一个类中的差异也越不明显。K-means聚类思想:K-means需要给出最终簇的数量k。它的核心思路是:从某个状态开始,通过不断的迭代来更新中心点的位置,来让原创 2020-08-25 23:05:27 · 1940 阅读 · 4 评论 -
python图像处理笔记-十一-多视图重建与立体图像
python图像处理笔记-十一-多视图重建与立体图像多视图重建由于照相机运动给我们提供了三维结构,所以这样计算三维重建的方法通常称作SFM (Structure from Motion,从运动中恢复结构)。我们假设摄像机已经标定,计算重建可以分为下面四个步骤:检测特征点,在两幅图像中匹配由匹配计算出基础矩阵由基础矩阵计算照相机矩阵三角形剖分这些三维点我们前面已经把者四个东西都做过了,但是当图像间的点包含不正确的匹配关系时,需要一个文集爱你方法来估计矩阵。稳健估计基础矩阵类似于稳健计算单原创 2020-08-25 23:04:05 · 1219 阅读 · 0 评论 -
python图像处理笔记-十-外极几照相机和三维结构的计算
python图像处理笔记-十-外极几照相机和三维结构的计算到这里就已经到书中的第五章了,进度大概是在50%。这一章介绍的如何处理多个视图,以及如何利用多个视图的几何关系来回复照相机位置信息和三维结构。通过在不同视点拍摄出的图像,可以使用特征匹配来计算出三维场景点以及照相机位置。外极几何多视图集合是利用在不同视点所拍摄图像间的关系,来研究照相机之间或特征之间关系的一门科学。图像的特征往往是兴趣点,这一章使用的也是兴趣点特征,多视图几何中最重要的内容是双视图几何。做什么?有一个场景的两个视图以及视图中原创 2020-08-25 23:01:19 · 350 阅读 · 0 评论 -
python图像处理笔记-九-简单标定、姿态估计与增强现实
python图像处理笔记-九-简单标定、姿态估计与增强现实一种简单的标定方法:在上一个笔记中我们学习了张正友标定法,并且挖了一个用张正友标定法标定相机的坑,但是这个坑目前还填补上。这一节里面我们要学的是用一种非常简单的方法进行标定,方法如下:需要准备的东西一个矩形(一本书就可以了)一个卷尺一个平面操作步骤数据测量测量你选的矩形的边长:dX,dYdX,dYdX,dY。将照相机和标定物体放置在平面上,使得照相机的背面和标定物体平行,同时物体位于照相机图像视图的中心,你可能需要调整照相机原创 2020-08-25 22:44:03 · 686 阅读 · 0 评论 -
图形学笔记(八)——针孔照相机模型与照相机标定
python图像处理笔记-八-针孔照相机模型与照相机标定前几天去忙别的事情了,大概有一个周没有更新了,周末有时间了赶紧学一手。这里对应的是书中的第四章,能坚持到这里的话,就已经啃完了书的三分之一了。参考教材:python计算机视觉编程视觉SLAM十四讲,从理论到实践针孔照相机模型针孔摄像机模型(有时称作摄影照相机模型),是计算机视觉中广泛应用的照相机模型。原因是:简单精度足...原创 2020-04-25 16:15:01 · 1403 阅读 · 0 评论 -
图形学笔记(六)——单应性变换
python图像处理笔记-六——单应性变换齐次坐标单应性变化是将一个平面内的店映射到另一个平面内的二维投影变换。本质上,单应性变换H,按照下方的方程映射到二维的点:[x′y′w′]=[h1h2h3h4h5h6h7h8h9][xyw]\left[\begin{matrix} x' \\ y' \\ w'\end{matrix}\right]=\left[\begin{matr...原创 2020-04-16 20:35:01 · 1666 阅读 · 1 评论 -
图形学笔记(五)——SIFT(尺度不变特征变换)
图形学笔记(五)——SIFT(尺度不变特征变换)SIFT(Scale-Invariant Feature Transform)的中文名字是尺度不变特征变换。SIFT描述子具有非常强的稳健性,自从SIFT出现,许多其他本质上使用相同描述子的方法也相继出现。它可以用于三维视角和噪声的可靠匹配。参考资料 Jan Erik Solem. Python计算机视觉编程 (图灵程序设计丛书) (p...原创 2020-04-15 23:44:46 · 656 阅读 · 0 评论 -
图形学笔记(四)——Harris 角点检测器延申
图形学笔记(四)Harris 角点检测器延申——在图像间寻找对应点原理Harris角点检测器可以检测出来图像中的兴趣点,但是没有给出比较图像间兴趣点来寻找匹配角点的方法。我们需要在每个点上加上描述子信息,并给出比较这些描述子的方法。兴趣点描述子是分配给兴趣点的一个向量,描述该点附近的图像的表观信息,描述子越好,寻找到的对应点也越好。我们用对应点或点的对应来描述相同物体和场景点在不同图像上形...原创 2020-04-15 16:48:13 · 256 阅读 · 0 评论 -
图形学笔记(三)—— Harris角点检测器
图形学笔记(三)—— Harris角点检测器前言CSDN不支持我的公式,大家可以到我的博客:wang-sy.github.io去看从现在开始学习的是书中的第二章:局部图像描述子。这里主要是寻找图像间的对应点和对应区域。Harris角点检测器参考资料Jan Erik Solem. Python计算机视觉编程 (图灵程序设计丛书) (p. 33). 人民邮电出版社. Kindle 版本....原创 2020-04-13 01:18:08 · 513 阅读 · 0 评论 -
图像处理笔记(二)
图像处理笔记(二)放在最开始的话参考的资料参考的资料是《python图像处理》,所以说学习的顺序和书中的编排也是基本相同的。书中对原理的解析非常少(几乎没有),所以我决定随着看到书中的现象,随着把原理搞清楚,顺便做成文档发到网上,也希望大家能够通过阅读我的文档有所收获。感谢今天下午忙完其他的事之后,忽然发现上一篇博客的浏览量有20!写了这么久博客,还从来没这么多人看。昨天讲的SVD有点粗...原创 2020-04-09 10:14:27 · 682 阅读 · 1 评论 -
图像处理笔记(一)
图像处理笔记(一)直方图均衡化参考文档[1] Jan Erik Solem. Python计算机视觉编程 (图灵程序设计丛书) (p. 11). 人民邮电出版社.[2] 直方图均衡化代码# 直方图均衡化def histeq(im, nbr_bins = 256): """ 对一副灰度图像进行直方图均衡化 """ # 计算图像的直方图 imhis...原创 2020-04-07 23:40:00 · 1259 阅读 · 0 评论