深度学习
文章平均质量分 74
lann*
这个作者很懒,什么都没留下…
展开
-
pytorch实现的LSTM时间序列预测
先占个位置,随后给出我修改的代码 参考链接:https://mp.weixin.qq.com/s?__biz=MzA5NDM4MjMxOQ==&mid=2447578969&idx=1&sn=1ae03db749b56b1d2a140e1369bd8dba&chksm=8458c6d9b32f4fcf2ade01c726fa734476a9e173eb1189cc3a4eef3e0d350a635ea986e8f35c&mpshare=1&scene=1&a原创 2020-07-26 14:39:27 · 2332 阅读 · 1 评论 -
伯禹AI - task 04 机器翻译、注意力机制与seq2seq模型、Transformer架构
(一)机器翻译及其相关技术 1. 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理:将数据集清洗、转化为神经网络的输入minbatch 分词:字符串---单词组成的列表 建立字典:单词组成的列表---单词id组成的列表 Enco...原创 2020-02-19 18:27:30 · 233 阅读 · 0 评论 -
伯禹AI-task 05 卷积神经网络基础 leNet 卷积神经网络进阶
(一)卷积神经网络的基础 1. CNN中的基础概念:卷积层和池化层,填充、步幅、输入通道和输出通道含义。 此处解释一个较简单问题:两个连续的3*3卷积核的感受野与一个5*5卷积核的感受野相同! 如上图所示3*3的输入在1个2*2的卷积核计算后等得到一个2*2的输出,我们在试想一个2*2的卷积核与图中2*2的输出作用,将得到一个整数z,此时我们便可以说z再上一层的感受野是...原创 2020-02-19 15:01:08 · 248 阅读 · 0 评论 -
伯禹AI - task03 过拟合、欠拟合及其解决方案 -梯度消失与爆炸、循环神经网络进阶
在介绍以上概念之前要理解 训练集、测试集与验证集的区分: 从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们...原创 2020-02-18 10:23:48 · 156 阅读 · 0 评论 -
伯禹-公益AI学习打卡 Task02
1.文本预处理 记录一哈文本数据的常见预处理步骤: (1)读入文本 (2)分词 (3)建立字典,将每个词映射到一个唯一的索引(index) (4)将文本从词的序列转换为索引的序列,方便输入模型 2.基于统计学的语言模型 主要理论是一个n元语法,它是一个基于n-1阶马尔可夫链的概率语言模型,主要解释如下: 3.循环神经网络基础 (1)需要明白循环神经网络的设计目的在于处理时间序列类...原创 2020-02-14 20:36:48 · 156 阅读 · 0 评论 -
伯禹-公益AI学习打卡 Task01
1.线性回归 这部分记录一下小批量随机梯度下降算法 学习率:η代表在每次优化中,能够学习的步长的大小 批量大小:B是小批量计算中的批量大小batch size 采用这样计算的原因我想有以下两点 (1) 优化模型训练过程,模型利于达到全局最优 (2)矢量计算可以提高运算效率 2.softmax与分类模型 此处记录一下采用交叉熵损失函数的原因 举例如下: 此时,只...原创 2020-02-14 20:06:08 · 144 阅读 · 0 评论 -
U-Net:用于生物医学图像分割的卷积神经网络 原文翻译
U-Net:用于生物医学图像分割的卷积神经网络 摘要 :大多数人认为,训练一个有效的神经网络需要海量带标签的数据。但在这篇文章里我们提出了一种网络和训练策略,它可依赖于充分使用数据增强技术使带标签的数据使用的更有效率,从而减少对大量带标签数据的依赖。该体系结构包括一个获得不同尺寸特征图定位信息的下采样收缩路径和一个与之对称上采样的扩展路径,该网络的输出图像具有高分辨率精确定位的特性。 我们证明这...翻译 2019-12-21 18:26:23 · 2676 阅读 · 2 评论