支持向量机基本模型定义为特征空间上的间隔最大的线性分类器。而它的学习策略为最大化分类间隔,最终可转化为凸二次规划问题求解。SVM为非参数模型。SVM的损失函数采用的是hingeloss。在学习分类器的时候,SVM只考虑与分类最相关的少数支持向量点。
应用:解决二分类或者多分类问题
最优分类超平面
最优分类超平面–尽可能的远离所有类别的数据点,对已知和未知数据都能准确地分类,因而,我们需要寻找有最大间隔的最优超平面。
定义超平面:

在二维空间里面,假设两个向量
可以得到:

解得,在二维平面的表示方式 y=ax+b 等价于
间隔与支持向量
正交投影:


可以得到向量 z=(u⋅x)u 是向量x在y上的正交投影。
由上可得:

点A(3,4)和超平面之间的距离||p||,p=(u⋅a)u
因而,空间中任一点
到超平面
的距离可以写成:
支持向量的定义:训练样本使得
成立,即样本在间隔边界处。
目标函数:我们需要最大化间隔,两个不同类支持向量到超平面的距离
即可得到约束条件

本文详细介绍了支持向量机(SVM)的工作原理,包括最优分类超平面、间隔与支持向量的概念,以及如何通过对偶问题简化求解。特别地,讨论了核函数在解决线性不可分问题中的作用,如线性核、非线性核(如RBF和sigmoid)及其应用场景。此外,还阐述了软间隔的概念,允许一定程度的错误分类,并介绍了支持向量回归(SVR)的基本思想。
最低0.47元/天 解锁文章
:SVM的原理&spm=1001.2101.3001.5002&articleId=94978524&d=1&t=3&u=4bb3d3ade92d42c78a917b1f663cb307)
1402

被折叠的 条评论
为什么被折叠?



