HDFS 详解

HDFS前言

l 设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;

l 在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务

l 重点概念:文件切块,副本存放,元数据

HDFS的概念和特性

首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

重要特性如下:
(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

(4)文件的各个block的存储管理由datanode节点承担
---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

HDFS的shell(命令行客户端)操作

HDFS命令行客户端使用

HDFS提供shell命令行客户端,使用方法如下:
在这里插入图片描述

命令行客户端支持的命令参数

[-appendToFile … ]
[-cat [-ignoreCrc] …]
[-checksum …]
[-chgrp [-R] GROUP PATH…]
[-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…]
[-chown [-R] [OWNER][:[GROUP]] PATH…]
[-copyFromLocal [-f] [-p] … ]
[-copyToLocal [-p] [-ignoreCrc] [-crc] … ]
[-count [-q] …]
[-cp [-f] [-p] … ]
[-createSnapshot []]
[-deleteSnapshot ]
[-df [-h] [ …]]
[-du [-s] [-h] …]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] … ]
[-getfacl [-R] ]
[-getmerge [-nl] ]
[-help [cmd …]]
[-ls [-d] [-h] [-R] [ …]]
[-mkdir [-p] …]
[-moveFromLocal … ]
[-moveToLocal ]
[-mv … ]
[-put [-f] [-p] … ]
[-renameSnapshot ]
[-rm [-f] [-r|-R] [-skipTrash] …]
[-rmdir [–ignore-fail-on-non-empty]

…]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} ]|[–set <acl_spec> ]]
[-setrep [-R] [-w] …]
[-stat [format] …]
[-tail [-f] ]
[-test -[defsz] ]
[-text [-ignoreCrc] …]
[-touchz …]
[-usage [cmd …]]

常用命令参数介绍

命令功能例子备注
-help输出这个命令参数手册
-ls显示目录信息hadoop fs -ls hdfs://hadoop-server01:9000/这些参数中,所有的hdfs路径都可以简写 hadoop fs -ls / 等同于上一条命令的效果
-mkdir在hdfs上创建目录hadoop fs -mkdir -p /aaa/bbb/cc/dd
-moveFromLocal从本地剪切粘贴到hdfshadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd
-moveToLocal从hdfs剪切粘贴到本地hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt
–appendToFile追加一个文件到已经存在的文件末尾hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txtHadoop fs -appendToFile ./hello.txt /hello.txt
-cat显示文件内容hadoop fs -cat /hello.txt
-tail显示一个文件的末尾hadoop fs -tail /weblog/access_log.1
-text以字符形式打印一个文件的内容hadoop fs -text /weblog/access_log.1
-chgrp -chmod -chownlinux文件系统中的用法一样,对文件所属权限hadoop fs -chmod 666 /hello.txthadoop fs -chown someuser:somegrp /hello.txt
-copyFromLocal从本地文件系统中拷贝文件到hdfs路径去hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/
-copyToLocal从hdfs拷贝到本地hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp从hdfs的一个路径拷贝hdfs的另一个路径hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-mv在hdfs目录中移动文件hadoop fs -mv /aaa/jdk.tar.gz /
-get等同于copyToLocal,就是从hdfs下载文件到本地hadoop fs -get /aaa/jdk.tar.gz
-getmerge合并下载多个文件比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,…hadoop fs -getmerge /aaa/log.* ./log.sum
-put等同于copyFromLocalhadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-rm删除文件或文件夹hadoop fs -rm -r /aaa/bbb/
-rmdir删除空目录hadoop fs -rmdir /aaa/bbb/ccc
-df统计文件系统的可用空间信息hadoop fs -df -h /
-du统计文件夹的大小信息hadoop fs -du -s -h /aaa/*
-count统计一个指定目录下的文件节点数量hadoop fs -count /aaa/
-setrep设置hdfs中文件的副本数量hadoop fs -setrep 3 /aaa/jdk.tar.gz

HDFS原理

概述

  1. HDFS集群分为两大角色:NameNode、DataNode (Secondary Namenode)
  2. NameNode负责管理整个文件系统的元数据
  3. DataNode 负责管理用户的文件数据块
  4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
  5. 每一个文件块可以有多个副本,并存放在不同的datanode上
  6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
  7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

HDFS写数据流程

概述

客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本

详细步骤图

在这里插入图片描述
详细步骤解析
1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2、namenode返回是否可以上传
3、client请求第一个 block该传输到哪些datanode服务器上
4、namenode返回3个datanode服务器ABC
5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

HDFS读数据流程

概述

客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

详细步骤图

在这里插入图片描述
详细步骤解析
1、跟namenode通信查询元数据,找到文件块所在的datanode服务器
2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件

NAMENODE工作机制

NAMENODE职责

NAMENODE职责:
负责客户端请求的响应
元数据的管理(查询,修改)

元数据管理

namenode对数据的管理采用了三种存储形式:
内存元数据(NameSystem)
磁盘元数据镜像文件
数据操作日志文件(可通过日志运算出元数据)

元数据存储机制

A、内存中有一份完整的元数据(内存meta data)
B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中

元数据手动查看

可以通过hdfs的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml

元数据的checkpoint

每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)
checkpoint的详细过程
在这里插入图片描述
checkpoint操作的触发条件配置参数

dfs.namenode.checkpoint.check.period=60  #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir} dfs.namenode.checkpoint.max-retries=3  #最大重试次数
dfs.namenode.checkpoint.period=3600  #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录

checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

元数据目录说明

在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:

$HADOOP_HOME/bin/hdfs namenode -format

格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构

current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid

其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:

<property>
  <name>dfs.name.dir</name>
  <value>file://${hadoop.tmp.dir}/dfs/name</value>
</property>
 
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
<property>
  <name>hadoop.tmp.dir</name>
  <value>/tmp/hadoop-${user.name}</value>
  <description>A base for other temporary directories.</description>
</property>

dfs.namenode.name.dir属性可以配置多个目录,
如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,…。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
1、VERSION文件是Java属性文件,内容大致如下:

#Fri Nov 15 19:47:46 CST 2013
namespaceID=934548976
clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196
cTime=0
storageType=NAME_NODE
blockpoolID=BP-893790215-192.168.24.72-1383809616115
layoutVersion=-47

其中
  (1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
  (2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
  (3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
  (4)、layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
  (5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明

a、使用如下命令格式化一个Namenode:
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]
选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。
b、使用如下命令格式化其他Namenode:
$HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>
c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:
$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config H A D O O P C O N F D I R − u p g r a d e − c l u s t e r I d &lt; c l u s t e r I D &gt; 如 果 没 有 提 供 C l u s t e r I D , 则 会 自 动 生 成 一 个 C l u s t e r I D 。     ( 6 ) 、 b l o c k p o o l I D : 是 针 对 每 一 个 N a m e s p a c e 所 对 应 的 b l o c k p o o l 的 I D , 上 面 的 这 个 B P − 893790215 − 192.168.24.72 − 1383809616115 就 是 在 我 的 n s 1 的 n a m e s p a c e 下 的 存 储 块 池 的 I D , 这 个 I D 包 括 了 其 对 应 的 N a m e N o d e 节 点 的 i p 地 址 。     2 、 HADOOP_CONF_DIR -upgrade -clusterId &lt;cluster_ID&gt; 如果没有提供ClusterID,则会自动生成一个ClusterID。   (6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。    2、 HADOOPCONFDIRupgradeclusterId<clusterID>ClusterIDClusterID  6blockpoolIDNamespaceblockpoolIDBP893790215192.168.24.721383809616115ns1namespaceIDIDNameNodeip  2dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。

3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。
补充:seen_txid
文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits

DATANODE的工作机制

概述

1、Datanode工作职责:
存储管理用户的文件块数据
定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)

<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>

2、Datanode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。

<property>
        <name>heartbeat.recheck.interval</name>
        <value>2000</value>
</property>
<property>
        <name>dfs.heartbeat.interval</name>
        <value>1</value>
</property>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值