HDFS前言
l 设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;
l 在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
l 重点概念:文件切块,副本存放,元数据
HDFS的概念和特性
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;
重要特性如下:
(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data
(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)
(4)文件的各个block的存储管理由datanode节点承担
---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)
(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改
HDFS的shell(命令行客户端)操作
HDFS命令行客户端使用
HDFS提供shell命令行客户端,使用方法如下:
命令行客户端支持的命令参数
[-appendToFile … ]
[-cat [-ignoreCrc] …]
[-checksum …]
[-chgrp [-R] GROUP PATH…]
[-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…]
[-chown [-R] [OWNER][:[GROUP]] PATH…]
[-copyFromLocal [-f] [-p] … ]
[-copyToLocal [-p] [-ignoreCrc] [-crc] … ]
[-count [-q]
[-cp [-f] [-p] … ]
[-createSnapshot []]
[-deleteSnapshot ]
[-df [-h] [
[-du [-s] [-h]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] … ]
[-getfacl [-R]
[-getmerge [-nl] ]
[-help [cmd …]]
[-ls [-d] [-h] [-R] [
[-mkdir [-p]
[-moveFromLocal … ]
[-moveToLocal ]
[-mv … ]
[-put [-f] [-p] … ]
[-renameSnapshot ]
[-rm [-f] [-r|-R] [-skipTrash] …]
[-rmdir [–ignore-fail-on-non-empty]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>}
[-setrep [-R] [-w]
[-stat [format]
[-tail [-f] ]
[-test -[defsz]
[-text [-ignoreCrc] …]
[-touchz
[-usage [cmd …]]
常用命令参数介绍
命令 | 功能 | 例子 | 备注 |
---|---|---|---|
-help | 输出这个命令参数手册 | ||
-ls | 显示目录信息 | hadoop fs -ls hdfs://hadoop-server01:9000/ | 这些参数中,所有的hdfs路径都可以简写 hadoop fs -ls / 等同于上一条命令的效果 |
-mkdir | 在hdfs上创建目录 | hadoop fs -mkdir -p /aaa/bbb/cc/dd | |
-moveFromLocal | 从本地剪切粘贴到hdfs | hadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd | |
-moveToLocal | 从hdfs剪切粘贴到本地 | hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt | |
–appendToFile | 追加一个文件到已经存在的文件末尾 | hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txt | Hadoop fs -appendToFile ./hello.txt /hello.txt |
-cat | 显示文件内容 | hadoop fs -cat /hello.txt | |
-tail | 显示一个文件的末尾 | hadoop fs -tail /weblog/access_log.1 | |
-text | 以字符形式打印一个文件的内容 | hadoop fs -text /weblog/access_log.1 | |
-chgrp -chmod -chown | linux文件系统中的用法一样,对文件所属权限 | hadoop fs -chmod 666 /hello.txt | hadoop fs -chown someuser:somegrp /hello.txt |
-copyFromLocal | 从本地文件系统中拷贝文件到hdfs路径去 | hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/ | |
-copyToLocal | 从hdfs拷贝到本地 | hadoop fs -copyToLocal /aaa/jdk.tar.gz | |
-cp | 从hdfs的一个路径拷贝hdfs的另一个路径 | hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2 | |
-mv | 在hdfs目录中移动文件 | hadoop fs -mv /aaa/jdk.tar.gz / | |
-get | 等同于copyToLocal,就是从hdfs下载文件到本地 | hadoop fs -get /aaa/jdk.tar.gz | |
-getmerge | 合并下载多个文件 | 比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,…hadoop fs -getmerge /aaa/log.* ./log.sum | |
-put | 等同于copyFromLocal | hadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2 | |
-rm | 删除文件或文件夹 | hadoop fs -rm -r /aaa/bbb/ | |
-rmdir | 删除空目录 | hadoop fs -rmdir /aaa/bbb/ccc | |
-df | 统计文件系统的可用空间信息 | hadoop fs -df -h / | |
-du | 统计文件夹的大小信息 | hadoop fs -du -s -h /aaa/* | |
-count | 统计一个指定目录下的文件节点数量 | hadoop fs -count /aaa/ | |
-setrep | 设置hdfs中文件的副本数量 | hadoop fs -setrep 3 /aaa/jdk.tar.gz |
HDFS原理
概述
- HDFS集群分为两大角色:NameNode、DataNode (Secondary Namenode)
- NameNode负责管理整个文件系统的元数据
- DataNode 负责管理用户的文件数据块
- 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
- 每一个文件块可以有多个副本,并存放在不同的datanode上
- Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
- HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行
HDFS写数据流程
概述
客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
详细步骤图
详细步骤解析
1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2、namenode返回是否可以上传
3、client请求第一个 block该传输到哪些datanode服务器上
4、namenode返回3个datanode服务器ABC
5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。
HDFS读数据流程
概述
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
详细步骤图
详细步骤解析
1、跟namenode通信查询元数据,找到文件块所在的datanode服务器
2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件
NAMENODE工作机制
NAMENODE职责
NAMENODE职责:
负责客户端请求的响应
元数据的管理(查询,修改)
元数据管理
namenode对数据的管理采用了三种存储形式:
内存元数据(NameSystem)
磁盘元数据镜像文件
数据操作日志文件(可通过日志运算出元数据)
元数据存储机制
A、内存中有一份完整的元数据(内存meta data)
B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
元数据手动查看
可以通过hdfs的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)
checkpoint的详细过程
checkpoint操作的触发条件配置参数
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir} dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录
checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据
元数据目录说明
在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:
$HADOOP_HOME/bin/hdfs namenode -format
格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构
current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid
其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:
<property>
<name>dfs.name.dir</name>
<value>file://${hadoop.tmp.dir}/dfs/name</value>
</property>
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop-${user.name}</value>
<description>A base for other temporary directories.</description>
</property>
dfs.namenode.name.dir属性可以配置多个目录,
如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,…。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
1、VERSION文件是Java属性文件,内容大致如下:
#Fri Nov 15 19:47:46 CST 2013
namespaceID=934548976
clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196
cTime=0
storageType=NAME_NODE
blockpoolID=BP-893790215-192.168.24.72-1383809616115
layoutVersion=-47
其中
(1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
(2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
(3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
(4)、layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
(5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明
a、使用如下命令格式化一个Namenode:
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]
选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。
b、使用如下命令格式化其他Namenode:
$HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>
c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:
$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config
H
A
D
O
O
P
C
O
N
F
D
I
R
−
u
p
g
r
a
d
e
−
c
l
u
s
t
e
r
I
d
<
c
l
u
s
t
e
r
I
D
>
如
果
没
有
提
供
C
l
u
s
t
e
r
I
D
,
则
会
自
动
生
成
一
个
C
l
u
s
t
e
r
I
D
。
(
6
)
、
b
l
o
c
k
p
o
o
l
I
D
:
是
针
对
每
一
个
N
a
m
e
s
p
a
c
e
所
对
应
的
b
l
o
c
k
p
o
o
l
的
I
D
,
上
面
的
这
个
B
P
−
893790215
−
192.168.24.72
−
1383809616115
就
是
在
我
的
n
s
1
的
n
a
m
e
s
p
a
c
e
下
的
存
储
块
池
的
I
D
,
这
个
I
D
包
括
了
其
对
应
的
N
a
m
e
N
o
d
e
节
点
的
i
p
地
址
。
2
、
HADOOP_CONF_DIR -upgrade -clusterId <cluster_ID> 如果没有提供ClusterID,则会自动生成一个ClusterID。 (6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。 2、
HADOOPCONFDIR−upgrade−clusterId<clusterID>如果没有提供ClusterID,则会自动生成一个ClusterID。 (6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP−893790215−192.168.24.72−1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。 2、dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。
3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。
补充:seen_txid
文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits
DATANODE的工作机制
概述
1、Datanode工作职责:
存储管理用户的文件块数据
定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>
2、Datanode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
<property>
<name>heartbeat.recheck.interval</name>
<value>2000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>1</value>
</property>