论文报告:基于改进YOLOv5s的轻量化金银花识别方法
论文报告文档
基于改进YOLOv5s的轻量化金银花识别方法
摘要
本文提出了一种基于改进YOLOv5s的轻量化金银花识别方法,旨在提高金银花采摘机器人的工作效率和采摘精度,并实现模型的快速部署到移动端。通过将EfficientNet的主干网络替换YOLOv5s的Backbone层,并加入SPPF特征融合模块,以及在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,减少了模型的参数量和计算量,同时提高了模型识别金银花的精确度和平均精度。实验结果表明,改进后的轻量化模型在参数量、计算量和权重大小上均有显著降低,且精确度和平均精度有所提高。
国内外研究现状
国内研究现状
- 金银花采摘技术:国内对金银花的采摘主要依赖人工,存在效率低下的问题,机械化和智能化采摘技术正在逐步发展。
- 目标检测技术应用:国内研究者开始将基于图像处理和机器学习的目标检测方法应用于农业采摘领域,如基于色差信息的识别模型和基于HSV颜色模型的分割方法。
- 深度学习在农业中的应用:随着深度学习技术的发展,越来越多的研究开始关注于如何将深度学习算法应用于农业生产,特别是在农业机器人采摘领域。
国外研究现状
- 农业采摘机器人:国际上已有多种成熟的采摘机器人投入生产使用,逐步代替人类劳动力。
- 目标检测模型发展:国际上对目标检测模型的研究较为深入,如YOLO系列、Faster-RCNN等,这些模型在农业领域有着广泛的应用。
- 模型轻量化研究:国际上对模型轻量化的研究较为活跃,旨在减少模型的参数量、计算量和权重大小,以便于模型在移动端的部署。
研究目的
本研究旨在设计一种金银花采摘机器人,通过实现金银花的识别及模型轻量化,提高采摘效率和精度,减少人工采摘的工作量,并为采摘机器人的识别和移动端部署提供参考和依据。