题目如下图所示:
首先给出求值的式子:值 = (小数位数值 + 1) * (阶码位数值 - 偏置值),这样求出每个值就很简单了。
易得1011110的值为
15
2
\tfrac{15}{2}
215,那我们怎样把它转换成格式B呢?首先我们先写出
15
15
15的二进制表示为[1111],接着
15
2
\tfrac{15}{2}
215的二进制表示为[111.1],然后将小数点左移两位得到
1.111
∗
2
2
1.111*2^{2}
1.111∗22,丢弃开头的1构成小数字段[111],最后阶码字段为
2
2
2加偏置值
7
7
7得到
9
9
9,二进制表示为1001。
另外几个也用一样的方法,不过要注意第二个数值为
25
32
\tfrac{25}{32}
3225,用二进制表示为
1.1001
∗
2
−
1
1.1001*2^{-1}
1.1001∗2−1,将其向下舍入到偶数得到
1.100
∗
2
−
1
1.100*2^{-1}
1.100∗2−1;第三个数值为
31
2
\tfrac{31}{2}
231,二进制表示为
1.1111
∗
2
3
1.1111*2^{3}
1.1111∗23,将其向上舍入到偶数得到
1.000
∗
2
4
1.000*2^{4}
1.000∗24。