不能移动的石头合并问题

Description

做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中:

(1)第一个模型:一行排列且相邻合并
有n堆石子A1,A2,...,An形成一行,每堆石头个数记为ai(1<=i<=n),相邻两堆可合并,合并的分值为新堆的
石子数。求合并为一堆的最低得分和最高得分。

(2)第二个模型:一圈排列且相邻合并
有n堆石子A1,A2,...,An形成首位相连的一个环形,An和A1相邻,每堆石头个数记为ai(1<=i<=n),相邻两堆
可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。

例如4堆石子,每堆石子个数:9 4 4 5
若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。

若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。

输入:

4

9 4 4 5

输出:

43 53

43 54

思路

这是一道动态规划问题,与矩阵连乘的最小数乘次数类似,因此求法也类似。

针对第一种模型,设m[i][j]记录i到j的最小得分情况,将i到j划分成任意的两份,则

当 i=j时, m[i][j] = 0;

当 i<j时, m[i][j] = min{ m[i,k]+m[k+1,j] | for all k, i<=k<j } + sum{ a(t) | for all t, i<=t<=j };

最终m[1][n]的结果即为所求。

同理,可推出最大得分情况

第二种模型,可以化成第一种模型,即A1,A2,...,An的环形,可以看成 A1 ... An A1 ... An-1,共 2n-1 堆的第一种模型。但是我们求的长度还是n。所以

我们所求即为 m[1,n], m[2,n+1], …, m[n,2n-1]这n个斜行元素中的最小值,

min{ m[i, n+i-1] | for all i, 1<=i<=n }
以下为代码:
#include <iostream>

#define N 101
#define X 200
using namespace std;

void min1(int a[N], int n, int m[N][N]){
    for(int i=1; i<=n; i++) m[i][i] = 0;//链长为1
    for(int r=2; r<=n; r++){//链长 >= 2
      for(int i=1; i<=n-r+1; i++){// i的取值
        int j = i+r-1;// j的取值
        int sum = 0;
        for(int p=i-1; p<j; p++){
          sum += a[p];
        }
        //求最小的m[i][j]
        m[i][j] = m[i+1][j] + sum;
        for(int k=i+1; k<j; k++){// k的取值
          int t = m[i][k] + m[k+1][j] + sum;
          if(t < m[i][j]) m[i][j] = t;
        }
      }
    }
}

void min2(int a[X], int n, int c[X][X]){
    for(int i=1; i<=n; i++) c[i][i] = 0;
    for(int r=2; r<=n; r++){
      for(int i=1; i<=n-r+1; i++){
        int j = i+r-1;
        int sum = 0;
        for(int p=i-1; p<j; p++){
          sum += a[p];
        }
        c[i][j] = c[i+1][j] + sum;
        for(int k=i+1; k<j; k++){
          int t = c[i][k] + c[k+1][j] + sum;
          if(t < c[i][j]) c[i][j] = t;
        }
      }
    }
}

void max1(int a[N], int n, int m[N][N]){
    for(int i=1; i<=n; i++) m[i][i] = 0;
    for(int r=2; r<=n; r++){
      for(int i=1; i<=n-r+1; i++){
        int j = i+r-1;
        int sum = 0;
        for(int p=i-1; p<j; p++){
          sum += a[p];
        }
        m[i][j] = m[i+1][j] + sum;
        for(int k=i+1; k<j; k++){
          int t = m[i][k] + m[k+1][j] + sum;
          if(t > m[i][j]) m[i][j] = t;
        }
      }
    }
}

void max2(int a[X], int n, int c[X][X]){
    for(int i=1; i<=n; i++) c[i][i] = 0;
    for(int r=2; r<=n; r++){
      for(int i=1; i<=n-r+1; i++){
        int j = i+r-1;
        int sum = 0;
        for(int p=i-1; p<j; p++){
          sum += a[p];
        }
        c[i][j] = c[i+1][j] + sum;
        for(int k=i+1; k<j; k++){
          int t = c[i][k] + c[k+1][j] + sum;
          if(t > c[i][j]) c[i][j] = t;
        }
      }
    }
}

int main()
{
    int n;
    int a[N];
    int b[X];
    int m[N][N];
    int c[X][X];

    cin >> n;
    for(int i=0; i<n; i++){
      cin >> a[i];
    }

    for(int i=0; i<2*n-1; i++){
      b[i] = a[i%n];
    }

    min1(a,n,m);
    cout << m[1][n] << " ";
    max1(a,n,m);
    cout << m[1][n] << endl;;

    min2(b,2*n-1,c);

    int temp;
    temp = c[1][n];
    for(int j=2; j<=n; j++){
      if(temp > c[j][n+j-1]) temp = c[j][n+j-1];
    }

    cout << temp << " ";

    max2(b,2*n-1,c);
    temp = c[1][n];
    for(int j=2; j<=n; j++){
      if(temp < c[j][n+j-1]) temp = c[j][n+j-1];

    }

    cout << temp << endl;
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值