【动态规划】不能移动的石子合并

不能移动的石子合并

 

做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中:

 

1)第一个模型:一行排列且相邻合并

n堆石子形成一行(a1,a2,,anai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。

 

2)第二个模型:一圈排列且相邻合并

n堆石子形成首位相连的一个环形(a1,a2,,anai为第i堆石子个数,ana1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。

 

例如4堆石子,每堆石子个数:9 4 4 5

若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52

若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54

 

此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,认为最后获得的也就是最低得分。但这个贪心策略是不对的。

如下反例:

 

石子:9 4 6 1 5

 

贪心策略:

9 4 6 6      计分6

9 10 6       计分10

9 16         计分16

25           计分25

得分共计:6+10+16+25=57

 

9 4 6 1 5 若如下方式合并:

13 6 1 5     计分13

13 6 6       计分6

13 12        计分12

25           计分25

13+6+12+25=56

 

9 4 6 6      计分6

9 4 12       计分12

13 12        计分13

25           计分25

6+12+13+25=56

 

后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。

 

输入格式

两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100

 

输出格式

两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。

 

输入样例

4

9 4 4 5

 

输出样例

43 52

43 54

 

 

分析:

开始看到两种模型好烦啊T_T,反正我是写了四个函数分别算的。这道题就有点经典了,如果没整理好思路,代码有得调的了。先摆公式:

本次积分 左边石头+右边石头+左边积分+右边积分。

思路也很简单,要求出[m, n]这个区间(m可以大于n)中累加的最优值,那么肯定是从区间中找到一点k(m <= k <n),使得[m, k][k+1, n]这两个子问题分别最优,然后将所有k值枚举,取最优值作为本次最优,算是子问题的分解吧。分解到什么时候是个头呢?很简单,到只有两个数的时候,k只有一种取值,那么肯定已经是最优的了,这里采用自底向上方式,填表分析。

下面贴上第二种模型的分析过程:

模型二比较复杂,拿上面的 9 4 4 5 作为分析数据,取最大值

当 | n - m | == 1 的时候,已经是最优问题,直接两个数相加。

 

 

 

n

 m 

0

1

2

3

4

1

0

    

    

    

2

13

0

  

  

3

 

8

0

  

4

 

 

9

0

 

 

当 |n-m| == 2 的时候:

 

[1,3]

9 4 4

1:

9/4 4

9 + 8 + 0 + 8 = 25

2

9 4/4

13 + 4 + 13 + 0 = 30

[2,4]

4 4 5

1

4/4 5

4 + 9 + 0 + 9 = 22

2:

4 4/5

8 + 5 + 8 + 0 = 21

 

[3,1]

4 5 9

1:

4/5 9

4 + 14 + 0 + 14 = 32

2:

4 5/9

9 + 9 + 9 + 0 = 27  

 

[4,2]

5 9 4

1:

5/9 4

5 + 13 + 0 + 13 = 31

2:

5 9/4

14 + 4 + 14 + 0 = 32

 

 

 

n

 m 

0

1

2

3

4

1

0

 

32

14

2

13

0

 

32

3

30

8

0

 

4

 

22

9

0

 

 

 

当 |n - m| == 3 的时候

[1,4]

9 4 4 5

1:

9/4 4 5

9 + 13 + 0 + 22 = 44

2:

9 4/4 5

13 + 9 + 13 + 9 = 44

3:

9 4 4/5

17 + 5 + 30 + 0 = 52

 

[2,1]

4 4 5 9

1:

4/4 5 9

4 + 18 + 0 + 32 = 54

2

4 4/5 9

8 + 14 + 8 + 14 = 44

3:

4 4 5/9

13 + 9 + 22 + 0 = 44

 

[3,2]

4 5 9 4

1:

4/5 9 4

4 + 18 + 0 + 32 = 54

2:

4 5/9 4

9 + 13 + 9 + 13 = 44

4 5 9/4

18 + 4 + 32 + 0 = 54

 

[4,1]

1 9 4 4

1

1/9 4 4 

1 + 17 + 0 + 30 = 48

2:

1 9/4 4

10 + 8 + 10 + 8 = 36

3:

1 9 4/4

14 + 4 + 27 + 0 = 45

 

 

n

 m 

0

1

2

3

4

1

0

54

32

14

2

13

0

54

32

3

30

8

0

54

4

52

22

9

0

 

接着在上面表格中,找到[1,4]、[2,1]、[3,2]、[4,3]中的一个最大值,返回即可

 

做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值