(2021秋不考)
11078 不能移动的石子合并(优先做)
时间限制:1000MS 代码长度限制:10KB
提交次数:0 通过次数:0
题型: 编程题 语言: G++;GCC;VC;JAVA
Description
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中:
(1)第一个模型:一行排列且相邻合并
有n堆石子A1,A2,…,An形成一行,每堆石头个数记为ai(1<=i<=n),相邻两堆可合并,合并的分值为新堆的
石子数。求合并为一堆的最低得分和最高得分。
(2)第二个模型:一圈排列且相邻合并
有n堆石子A1,A2,…,An形成首位相连的一个环形,An和A1相邻,每堆石头个数记为ai(1<=i<=n),相邻两堆
可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。
例如4堆石子,每堆石子个数:9 4 4 5
若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。
若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。
此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,认为最后获得的也就是最
低得分。但这个贪心策略是不对的。如下反例:
/*
*
* Created on: 2021年12月18日
*/
#include <iostream>
#include <cstring>
using namespace std;
/*同矩阵连乘问题,可以将模式二转化为模式一,将数组延伸为a[2n],即a[1..2n - 1], a1,a2..an,a1,a2...an-1,每次调用数组的长度为n即可
f(i,j)=0 , i==j
f(i,j)=min{f(i,k)+f(k+1,j)|i<=k<j}+sum(a[i]+......+a[j])
*/
int MatrixChainMin(int *sum, int index, int n);//n 为数组长度, index 为起始位置
int MatrixChainMax(int *sum, int index, int n);//n 为数组长度, index 为起始位置
int main(){
int n;
cin >> n;
int *a = new int[2 * n];
int *sum = new int[2 * n];
memset(sum, 0, sizeof(sum));
for(int i = 1; i <= n; i++){
cin >> a[i];
sum[i] = sum[i - 1] + a[i];
}
for(int i = n + 1; i <= 2 * n - 1; i++){//供模式二用
a[i] = a[i - n];
sum[i] = sum[i - 1] + a[i];
}
int stoneMin = MatrixChainMin(sum, 1, n);
int stoneMax = MatrixChainMax(sum, 1, n);
cout << stoneMin << " " << stoneMax << endl;
for(int i = 2; i <= n; i++){
int tMin = MatrixChainMin(sum, i, n);
if(stoneMin > tMin)
stoneMin = tMin;
int tMax = MatrixChainMax(sum, i, n);
if(stoneMax < tMax)
stoneMax = tMax;
}
cout << stoneMin << " " << stoneMax;
delete[] a;
delete[] sum;
return 0;
}
int MatrixChainMin(int *sum, int index, int n){//求最小值
int** m = new int*[n + 1];
for(int i = 0; i <= n; i++)
m[i] = new int[n + 1];
for(int i = 1; i <= n; i++)
m[i][i] = 0;
for(int r = 2; r <= n; r++){
for(int i = 1; i <= n - r + 1; i++){
int j = i + r - 1;
m[i][j] = m[i + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
for(int k = i + 1; k < j; k++){
int t = m[i][k] + m[k + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
if(m[i][j] > t)
m[i][j] = t;
}
}
}
int stoneMin = m[1][n];
for(int i = 0; i <= n; i++)
delete[] m[i];
delete[] m;
return stoneMin;
}
int MatrixChainMax(int *sum, int index, int n){//求最大值
int** m = new int*[n + 1];
for(int i = 0; i <= n; i++)
m[i] = new int[n + 1];
for(int i = 1; i <= n; i++)
m[i][i] = 0;
for(int r = 2; r <= n; r++){
for(int i = 1; i <= n - r + 1; i++){
int j = i + r - 1;
m[i][j] = m[i + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
for(int k = i + 1; k < j; k++){
int t = m[i][k] + m[k + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
if(m[i][j] < t)
m[i][j] = t;
}
}
}
int stoneMax = m[1][n];
for(int i = 0; i <= n; i++)
delete[] m[i];
delete[] m;
return stoneMax;
}
Hint
第一个石子合并模型,和书上3.1节的矩阵连乘问题类似.
假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。
递推公式如下,其中min表示求最小,sum表示求和.
(1) m[i,j]=0, ifi=j
(2)m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j
至于求最大值完全同理.
至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
将数组延伸为a[2n],即a[1…2n - 1], a1,a2…an,a1,a2…an-1,每次调用数组的长度为n即可