11078 不能移动的202合1并(优先做)

11 篇文章 0 订阅

(2021秋不考)
11078 不能移动的石子合并(优先做)
时间限制:1000MS 代码长度限制:10KB
提交次数:0 通过次数:0

题型: 编程题 语言: G++;GCC;VC;JAVA
Description
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中:

(1)第一个模型:一行排列且相邻合并
有n堆石子A1,A2,…,An形成一行,每堆石头个数记为ai(1<=i<=n),相邻两堆可合并,合并的分值为新堆的
石子数。求合并为一堆的最低得分和最高得分。

(2)第二个模型:一圈排列且相邻合并
有n堆石子A1,A2,…,An形成首位相连的一个环形,An和A1相邻,每堆石头个数记为ai(1<=i<=n),相邻两堆
可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。

例如4堆石子,每堆石子个数:9 4 4 5
若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。
若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。

此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,认为最后获得的也就是最
低得分。但这个贪心策略是不对的。如下反例:

![在这里插入图片描述](https://img-blog.csdnimg.cn/f059ada8a72d497080543bfb69a3fc44.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5ZOI5ZOITGl177yB,size_20,color_FFFFFF,t_70,g_se,x_16

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

/*
 *
 *  Created on: 2021年12月18日
 */


#include <iostream>
#include <cstring>
using namespace std;
/*同矩阵连乘问题,可以将模式二转化为模式一,将数组延伸为a[2n],即a[1..2n - 1], a1,a2..an,a1,a2...an-1,每次调用数组的长度为n即可
f(i,j)=0 ,   i==j
f(i,j)=min{f(i,k)+f(k+1,j)|i<=k<j}+sum(a[i]+......+a[j])
*/

int MatrixChainMin(int *sum, int index, int n);//n 为数组长度, index 为起始位置
int MatrixChainMax(int *sum, int index, int n);//n 为数组长度, index 为起始位置

int main(){
	int n;
	cin >> n;
	int *a = new int[2 * n];
	int *sum = new int[2 * n];
	memset(sum, 0, sizeof(sum));
	for(int i = 1; i <= n; i++){
		cin >> a[i];
		sum[i] = sum[i - 1] + a[i];
	}
	for(int i = n + 1; i <= 2 * n - 1; i++){//供模式二用
		a[i] = a[i - n];
		sum[i] = sum[i - 1] + a[i];
	}
 	int stoneMin = MatrixChainMin(sum, 1, n);
 	int stoneMax = MatrixChainMax(sum, 1, n);
 	cout << stoneMin << " " << stoneMax << endl;
 	for(int i = 2; i <= n; i++){
 		int tMin = MatrixChainMin(sum, i, n);
 		if(stoneMin > tMin)
 			stoneMin = tMin;
 		int tMax = MatrixChainMax(sum, i, n);
 		if(stoneMax < tMax)
 			stoneMax = tMax;
 	}
 	cout << stoneMin << " " << stoneMax;

	delete[] a;
	delete[] sum;
	return 0;
}

int MatrixChainMin(int *sum, int index, int n){//求最小值
	int** m = new int*[n + 1];
	for(int i = 0; i <= n; i++)
		m[i] = new int[n + 1];
	for(int i = 1; i <= n; i++)
		m[i][i] = 0;
	for(int r = 2; r <= n; r++){
		for(int  i = 1; i <= n - r + 1; i++){
			int j = i + r - 1;
			m[i][j] = m[i + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
			for(int k = i + 1; k < j; k++){
				int t = m[i][k] + m[k + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
				if(m[i][j] > t)
					m[i][j] = t;
			}
		}
	}
	int stoneMin = m[1][n];
	for(int i = 0; i <= n; i++)
		delete[] m[i];
	delete[] m;
	return stoneMin;
}

int MatrixChainMax(int *sum, int index, int n){//求最大值
	int** m = new int*[n + 1];
	for(int i  = 0; i <= n; i++)
		m[i] = new int[n + 1];
	for(int i = 1; i <= n; i++)
		m[i][i] = 0;
	for(int r = 2; r <= n; r++){
		for(int i = 1; i <= n - r + 1; i++){
			int j = i + r - 1;
			m[i][j] = m[i + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
			for(int k = i + 1; k < j; k++){
				int t = m[i][k] + m[k + 1][j] + sum[j + index - 1] - sum[i - 1 + index - 1];
				if(m[i][j] < t)
					m[i][j] = t;
			}
		}
	}
	int stoneMax = m[1][n];
	for(int i = 0; i <= n; i++)
		delete[] m[i];
	delete[] m;
	return stoneMax;
}

Hint
第一个石子合并模型,和书上3.1节的矩阵连乘问题类似.
假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。
递推公式如下,其中min表示求最小,sum表示求和.
(1) m[i,j]=0, ifi=j
(2)m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j
至于求最大值完全同理.
至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
将数组延伸为a[2n],即a[1…2n - 1], a1,a2…an,a1,a2…an-1,每次调用数组的长度为n即可

如下两个模型的石子合并,如下模型石子不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子aiaj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值