机器学习技法笔记--- Linear SVM

本文探讨了在机器学习中如何选择最佳的线性超平面(Hyperplane)以实现最大的间隔,从而提高分类的鲁棒性。内容包括为什么选择远离数据点的超平面、如何定义最远的超平面、如何用数学公式表示最大间隔超平面,以及最终如何通过拉格朗日对偶法解决这一问题。
摘要由CSDN通过智能技术生成

1)引入

线性可分的情况下,下面哪条线(或者哪个面)算是最好的?


2)为什么选择的超平面(线)Hyperplane要离Xn最远?

因为如果未来的数据X ≈ 已测的数据Xn(也就是看做有一些测量误差noise),那么一旦超平面过近,就有可能导致分类错误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值