BZOJ_P3997 [TJOI2015]组合数学(动态规划)

Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 549 Solved: 391
[Submit][Status][Discuss]
Description
给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

Input
第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有
Output
输出一个整数,表示至少要走多少次。

Sample Input
1
3 3
0 1 5
5 0 0
1 0 0

Sample Output
10

HINT
N<=1000,M<=1000.每个格子中财宝数不超过10^6

Source

思路:
仔细观察问题会发现,如果选择了某一个点(i,j),那么需要找(i+1,j-1)这个矩阵中的最大限制数(我也不知道怎么叫,暂且这样叫,能理解就好qwq),最大一个矩阵是n*n的,它的限制是向下的,所以从左下角开始DP,左下角的最大限制数是它本身,依次向右上角扩展,并且要保证使用的是单增的,所以状态转移方程就是f[i][j]=max(f[i][j]+f[i+1][j-1],max(f[i][j-1],f[i+1][j]));最大矩阵n*n就是f[1][n]

#include<cstdio>
#include<iostream>
using namespace std;
#define N 1005
int t,n,m,ans;int f[N][N];
void in(int &x){
    x=0;char ch=getchar();
    while(ch>'9'||ch<'0') ch=getchar();
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
}
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                in(f[i][j]);
        for(int j=1;j<=m;j++){
            for(int i=n;i>0;i--){
            /*  int t=f[i][j];
                for(int k=1;k<j;k++)
                    f[i][j]=max(f[i][j],t+f[i+1][k]);
                for(int k=n;k>i;k--)
                    f[i][j]=max(f[i][j],t+f[k][j-1]);*/
                f[i][j]=max(f[i][j]+f[i+1][j-1]
                    ,max(f[i][j-1],f[i+1][j]));
            }
        }
        printf("%d\n",f[1][n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值