[BZOJ4005][JLOI2015]骗我呢(组合数学好题)

BZOJ、UOJ、LOJ 专栏收录该内容
341 篇文章 1 订阅

Address

Solution

  • 非常有意思,思路非常棒的题目
  • 发现一个很优秀的条件:对于 1 ≤ i ≤ n 1\le i\le n 1in 1 ≤ j ≤ m 1\le j\le m 1jm 满足 0 ≤ x i , j ≤ m 0\le x_{i,j}\le m 0xi,jm ,并且对于任意的 1 ≤ i ≤ n 1\le i\le n 1in 1 ≤ j &lt; m 1\le j&lt;m 1j<m 满足 x i , j &lt; x i , j + 1 x_{i,j}&lt;x_{i,j+1} xi,j<xi,j+1
  • 这个条件告诉我们:这个数组每行都是 [ 0 , m ] [0,m] [0,m] 内的数扔掉其中一个之后再按顺序排列的
  • m = 3 m=3 m=3 x i , j x_{i,j} xi,j 一行内的合法方案只有 4 4 4 种( 1 , 2 , 3 1,2,3 1,2,3 0 , 2 , 3 0,2,3 0,2,3 0 , 1 , 3 0,1,3 0,1,3 0 , 1 , 2 0,1,2 0,1,2
  • 于是我们把问题转化成了一个序列 a i ∈ [ 0 , m ] ( 1 ≤ i ≤ n ) a_i\in[0,m](1\le i\le n) ai[0,m](1in) 的计数(即 a i a_i ai 在第 i i i 行没有出现过)
  • 而对于 x i , j &lt; x i − 1 , j + 1 x_{i,j}&lt;x_{i-1,j+1} xi,j<xi1,j+1 的限制,分析一下可以发现,这等价于对于每个 1 &lt; i ≤ n 1&lt;i\le n 1<in 都有 a i ≥ a i − 1 − 1 a_i\ge a_{i-1}-1 aiai11
  • 可以假设 a 0 = 0 a_0=0 a0=0 ,那么上面的条件对于 1 ≤ i ≤ n 1\le i\le n 1in 都满足
  • 我们有了一个 DP 状态: f [ i ] [ j ] f[i][j] f[i][j] 表示确定到前 i i i 个数,第 i i i 个数不超过 j j j 的方案数( j j j 的上界是 m + 1 m+1 m+1 ,原因下面会解释)
  • f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1
  • f [ i ] [ j ] = f [ i ] [ j − 1 ] + f [ i − 1 ] [ j + 1 ] f[i][j]=f[i][j-1]+f[i-1][j+1] f[i][j]=f[i][j1]+f[i1][j+1]
  • 意义是第 i i i 个数为 j j j 时,第 i − 1 i-1 i1 个数必须 ≤ j + 1 \le j+1 j+1 ,这个方案再加上第 i i i 个数不超过 j − 1 j-1 j1 的方案数
  • 注意到如果 j j j 的上界为 m m m ,那么这个转移在 j &lt; m j&lt;m j<m j = m j=m j=m 时会有区别,不便于接下来的讨论
  • 答案为 f [ n ] [ m + 1 ] f[n][m+1] f[n][m+1]
  • 我们有了 O ( n m ) O(nm) O(nm) 的 DP 之后,我们考虑从 f [ 0 ] [ 0 ] f[0][0] f[0][0] 转移到 f [ n ] [ m + 1 ] f[n][m+1] f[n][m+1] 的过程
  • 假设现在在 f [ i ] [ j ] f[i][j] f[i][j]
  • 执行第一种转移之后, j j j 会加一
  • 执行第二种转移之后, i i i 加一, j j j 减一
  • 显然这个过程中, j j j 不能小于 0 0 0 或大于 m + 1 m+1 m+1
  • 把从 f [ 0 ] [ 0 ] f[0][0] f[0][0] f [ n ] [ m + 1 ] f[n][m+1] f[n][m+1] 的转移过程描述成一个 − 1 -1 1 1 1 1 构成的序列, − 1 -1 1 表示第一种转移, 1 1 1 表示第二种转移
  • 那么经过前 k k k 次转移之后 j j j 的值,就等于这个序列的长度为 k k k 的前缀和
  • 于是这个序列需要满足任意的前缀和都不能小于 0 0 0 或大于 m + 1 m+1 m+1
  • 把问题抽象到二维平面上,答案即为从 ( 0 , 0 ) (0,0) (0,0) 出发,只能往右或往上走,在 y = x y=x y=x y = x + m + 1 y=x+m+1 y=x+m+1 两条直线的夹缝之间(相当于不能触碰直线 y = x − 1 y=x-1 y=x1 y = x + m + 2 y=x+m+2 y=x+m+2 )到达 ( n , n + m + 1 ) (n,n+m+1) (n,n+m+1) 的方案数
    在这里插入图片描述
  • 如果不考虑限制,那么方案数显然为 ( 2 n + m + 1 n ) \binom{2n+m+1}n (n2n+m+1)
  • 答案可以看成
  • ( 2 n + m + 1 n ) − 先 越 过 下 边 界 的 方 案 数 − 先 越 过 上 边 界 的 方 案 数 \binom{2n+m+1}n-先越过下边界的方案数-先越过上边界的方案数 (n2n+m+1)
  • 考虑先越过下边界的方案数。考虑一条 ( 0 , 0 ) (0,0) (0,0) ( n , n + m + 1 ) (n,n+m+1) (n,n+m+1) 的,第一个越过的边界为下边界的路径,如果找到第一个越过下边界的点,将这个点之后的路径(下图中蓝色)关于直线 y = x − 1 y=x-1 y=x1 翻折(下图中紫色)
    在这里插入图片描述
  • 发现这其实就是 ( 0 , 0 ) (0,0) (0,0) ( n + m + 2 , n − 1 ) (n+m+2,n-1) (n+m+2,n1) ,第一个越过的边界为下边界的方案数
  • 同理,先越过上边界到达 ( n , n + m + 1 ) (n,n+m+1) (n,n+m+1) 的方案数,就是先越过上边界到达 ( n − 1 , n + m + 2 ) (n-1,n+m+2) (n1,n+m+2) 的方案数
  • 定义两个函数
  • f ( x , y ) f(x,y) f(x,y) :从 ( 0 , 0 ) (0,0) (0,0) 开始第一个越过的边界为下边界,到达 ( x , y ) (x,y) (x,y) 的方案数
  • g ( x , y ) g(x,y) g(x,y) :从 ( 0 , 0 ) (0,0) (0,0) 开始第一个越过的边界为上边界,到达 ( x , y ) (x,y) (x,y) 的方案数
  • 注意上面的 ( x , y ) (x,y) (x,y) 均满足 y − x &lt; 0 y-x&lt;0 yx<0 y − x &gt; m + 1 y-x&gt;m+1 yx>m+1
  • 考虑 f ( x , y ) f(x,y) f(x,y) :由于 y − x &lt; 0 y-x&lt;0 yx<0 y − x &gt; m + 1 y-x&gt;m+1 yx>m+1 ,故 ( 0 , 0 ) (0,0) (0,0) ( x , y ) (x,y) (x,y) 的路径必然越过边界
  • 所以
  • f ( x , y ) = ( x + y x ) − 先 越 过 上 边 界 到 达 ( x , y ) 的 方 案 数 f(x,y)=\binom{x+y}x-先越过上边界到达(x,y)的方案数 f(x,y)=(xx+y)(x,y)
  • 而对于一条先越过上边界到达 ( x , y ) (x,y) (x,y) 的路径,将这条路径在第一个越过 y = x + m + 1 y=x+m+1 y=x+m+1 的位置之后的部分做一个关于直线 y = x + m + 2 y=x+m+2 y=x+m+2 的翻折,就得到一条从 ( 0 , 0 ) (0,0) (0,0) 开始,第一个越过的边界为上边界,到达 ( y − m − 2 , x + m + 2 ) (y-m-2,x+m+2) (ym2,x+m+2) 的路径
  • 于是
  • f ( x , y ) = ( x + y x ) − g ( y − m − 2 , x + m + 2 ) f(x,y)=\binom{x+y}x-g(y-m-2,x+m+2) f(x,y)=(xx+y)g(ym2,x+m+2)
  • 同理
  • g ( x , y ) = ( x + y x ) − f ( y + 1 , x − 1 ) g(x,y)=\binom{x+y}x-f(y+1,x-1) g(x,y)=(xx+y)f(y+1,x1)
  • 如要计算一个 f ( x , y ) f(x,y) f(x,y) g ( x , y ) g(x,y) g(x,y) ,则可以按照上面的两个式子进行递归求解
  • 边界:当 x &lt; 0 x&lt;0 x<0 y &lt; 0 y&lt;0 y<0 时, f ( x , y ) = g ( x , y ) = 0 f(x,y)=g(x,y)=0 f(x,y)=g(x,y)=0
  • 可以证明,递归最多 O ( n + m ) O(n+m) O(n+m) 次可以到达边界
  • 答案为
  • ( 2 n + m + 1 n ) − f ( n + m + 2 , n − 1 ) − g ( n − 1 , n + m + 2 ) \binom{2n+m+1}n-f(n+m+2,n-1)-g(n-1,n+m+2) (n2n+m+1)f(n+m+2,n1)g(n1,n+m+2)
  • 复杂度 O ( n + m ) O(n+m) O(n+m)

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

int f(int, int);
int g(int, int);

const int N = 3e6 + 5, ZZQ = 1e9 + 7;

int n, m, fac[N], inv[N];

int C(int n, int m)
{
	return 1ll * fac[n] * inv[m] % ZZQ * inv[n - m] % ZZQ;
}

int f(int x, int y)
{
	if (x < 0 || y < 0) return 0;
	return (C(x + y, x) - g(y - m - 2, x + m + 2) + ZZQ) % ZZQ;
}

int g(int x, int y)
{
	if (x < 0 || y < 0) return 0;
	return (C(x + y, x) - f(y + 1, x - 1) + ZZQ) % ZZQ;
}

int main()
{
	std::cin >> n >> m;
	fac[0] = inv[0] = inv[1] = 1;
	for (int i = 1; i <= (n << 1) + m + 1; i++)
		fac[i] = 1ll * fac[i - 1] * i % ZZQ;
	for (int i = 2; i <= (n << 1) + m + 1; i++)
		inv[i] = 1ll * (ZZQ - ZZQ / i) * inv[ZZQ % i] % ZZQ;
	for (int i = 2; i <= (n << 1) + m + 1; i++)
		inv[i] = 1ll * inv[i] * inv[i - 1] % ZZQ;
	std::cout << ((C((n << 1) + m + 1, n) - f(n + m + 2, n - 1)
		+ ZZQ) % ZZQ - g(n - 1, n + m + 2) + ZZQ) % ZZQ;
	return 0;
}
  • 3
    点赞
  • 1
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值