【应用、扰动、实时调度】扰动下能量目标列车时刻表重调度问题的深度强化学习方法
A Deep Reinforcement Learning Approach for the Energy-Aimed Train Timetable Rescheduling Problem Under Disturbances
- 单智能体下的时刻调度
- 干扰情况下实时决策调度
区别
- 与DDPG相比具有更好的稳定性和学习效率,在测试过程中具有更好的节能效果。[DDPG论文:G. Yang, F. Zhang, C. Gong, and S. Zhang, “Application of a deep deterministic policy gradient algorithm for energy-aimed timetable rescheduling problem,” Energies, vol. 12, no. 18, p. 3461, Sep. 2019.]
- 与遗传算法、传统启发式算法比,扰动后在速度和时间上可实现实时调度
建模
-
时间模型
- 从每个站的出发时刻 t d e t_{de} tde行驶时间 t t r t_{tr} ttr停站时间 t d w t_{dw} tdw,0车离开始发站时间为0, t 0 t_0 t0为车头距时间,m车离开时间则为 t d e m , 1 = ( m − 1 ) t 0 t^{m,1}_{de}=(m-1)t_0 tdem,1=(m−1)t0
- 末班车到达终点站的时间: t t o t a l M , N = t d e M , 1 + ∑ i = 2 N − 1 ( t t r M , i + t d w M , i ) + t t r M , N + t ε t^{M,N}_{total}=t^{M,1}_{de}+\sum _{i=2} ^{N-1}(t_{tr}^{M,i}+t_{dw}^{M,i})+t_{tr}^{M,N}+t_ε ttotalM,N=tde