【单智能体应用、扰动、实时调度】扰动下能量目标列车时刻表重调度问题的深度强化学习方法

【应用、扰动、实时调度】扰动下能量目标列车时刻表重调度问题的深度强化学习方法

A Deep Reinforcement Learning Approach for the Energy-Aimed Train Timetable Rescheduling Problem Under Disturbances


  • 单智能体下的时刻调度
  • 干扰情况下实时决策调度

区别
  • 与DDPG相比具有更好的稳定性和学习效率,在测试过程中具有更好的节能效果。[DDPG论文:G. Yang, F. Zhang, C. Gong, and S. Zhang, “Application of a deep deterministic policy gradient algorithm for energy-aimed timetable rescheduling problem,” Energies, vol. 12, no. 18, p. 3461, Sep. 2019.]
  • 与遗传算法、传统启发式算法比,扰动后在速度和时间上可实现实时调度

建模
  • 时间模型
    • 从每个站的出发时刻 t d e t_{de} tde行驶时间 t t r t_{tr} ttr停站时间 t d w t_{dw} tdw,0车离开始发站时间为0, t 0 t_0 t0为车头距时间,m车离开时间则为 t d e m , 1 = ( m − 1 ) t 0 t^{m,1}_{de}=(m-1)t_0 tdem,1=(m1)t0
    • 末班车到达终点站的时间: t t o t a l M , N = t d e M , 1 + ∑ i = 2 N − 1 ( t t r M , i + t d w M , i ) + t t r M , N + t ε t^{M,N}_{total}=t^{M,1}_{de}+\sum _{i=2} ^{N-1}(t_{tr}^{M,i}+t_{dw}^{M,i})+t_{tr}^{M,N}+t_ε ttotalM,N=tde
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值