机器学习:导数与偏导数的区别.

导数和偏导数是数学分析中的重要概念,尤其在机器学习中起到关键作用。对于一元函数,导数描述了函数变化率;而在二元函数中,偏导数分别表示函数对每个自变量的局部变化率。理解并掌握如何求解偏导数是深入学习多元函数微积分和机器学习算法的基础。在求偏导数时,需将非目标变量视作常数,简化为一元函数问题来处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习:导数与偏导数

导数和偏导数没有本质区别,都是当自变量的变化趋于0时,函数值的变化量与自变量变化量的比值的极限(如果极限存在的话)。

一元函数,一个y对应一个x,导数只有一个。

二元函数,一个z对应一个x和一个y,有两个导数:一个z对x的导数,一个z对y的导数,也叫做偏导数。

求偏导数时要注意,对一个变量求导,另一个变量视为常数,只对改变量求导,从而将偏导数的求解转化为了一元函数的求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HanZee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值