Kafka Consumer如何实现精确一次消费数据

简介

在使用kafka时,大多数场景对于数据少量的不一致(重复或者丢失)并不关注,比如日志,因为不会影响最终的使用或者分析,但是在某些应用场景(比如业务数据),需要对任何一条消息都要做到精确一次的消费,才能保证系统的正确性,kafka并不提供准确一致的消费API,需要我们在实际使用时借用外部的一些手段来保证消费的精确性,下面我们介绍如何实现

kafka消费机制

这篇文章KafkaConsumer使用介绍、参数配置介绍了如何kafka具有两种提交offset(消费偏移量)方式,我们在Kafka简介以及安装和使用可知每个分区具备一offset记录消费位置,如果消费者一直处于正常的运行转态,那么offset将没有什么用处,因为正常消费时,consumer记录了本次消费的offset和下一次将要进行poll数据的offset起始位置,但是如果消费者发生崩溃或者有新的消费者加入消费者组,就会触发再均衡Rebalance,Rebalance之后,每个消费者将会分配到新的分区,而消费者对于新的分区应该从哪里进行起始消费,这时候提交的offset信息就起作用了,提交的offset信息包括消费者组所有分区的消费进度,这时候消费者可以根据消费进度继续消费,提交offset提交自动提交是最不具确定性的,所以要使用手动提交来控制offset

消费时出现几种异常情况

自动提交

  • 重复消费:当数据已经被处理,然后自动提交offset时消费者出现故障或者有新消费者加入组导致再均衡,这时候offset提交失败,导致这批已经处理的数据的信息没有记录,后续会重复消费一次
  • 丢失数据:如果业务处理时间较长一点,这时候数据处理业务还未完成,offset信息已经提交了,但是在后续处理数据过程中程序发生了崩溃,导致这批数据未正常消费,这时候offset已经提交,消费者后续将不在消费这批数据,导致这批数据将会丢失

手动提交

  • 重复消费(最少一次消费语义实现):消费数据处理业务完成后进行offset提交,可以保证数据最少一次消费,因为在提交offset的过程中可能出现提交失败的情况,导致数据重复消费
    代码实现
package com.huawei.kafka.consumer;

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;

import java.time.Duration;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
import java.util.Properties;

/**
 * @author: xuqiangnj@163.com
 * @date: 2019/5/3 13:13
 * @description:同步结合异步方式提交
 */
public class SyncAndAsyncCommitConsumer {

    private static Properties props = new Properties();

    static {
        props.put("bootstrap.servers", "192.168.142.139:9092");
        props.put("group.id", "Test");
        props.put("enable.auto.commit", false);//注意这里设置为手动提交方式
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    }

    final KafkaConsumer<String, String> consumer;

    private volatile boolean isRunning = true;

    public SyncAndAsyncCommitConsumer(String topicName) {
        consumer = new KafkaConsumer<String, String>(props);
        consumer.subscribe(Arrays.asList(topicName), new ConsumerRebalanceListener() {

            //Rebalance之前执行
            @Override
            public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                //确保在Rebalance的时候也能提交成功
                consumer.commitSync();
            }

            //重新分配分区时执行
            @Override
            public void onPartitionsAssigned(Collection<TopicPartition> partitions) {

            }
        });
    }

    //这里使用异步提交和同步提交的组合方式
    public void receiveMsg() {
        try {
            while (isRunning) {
                ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
                if (!consumerRecords.isEmpty()) {
                    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                        /*System.out.println("TopicName: " + consumerRecord.topic() + " Partition:" +
                                consumerRecord.partition() + " Offset:" + consumerRecord.offset() + "" +
                                " Msg:" + consumerRecord.value());*/
                        //进行逻辑处理
                        //handle(consumerRecord);
                    }
                    consumer.commitAsync((Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception)-> {
                        //通过回调函数,查看提交结果
                        if (exception != null){
                            consumer.commitSync(offsets);//如果发生异常,尝试重试
                        }
                    });//正常情况使用异步提交,提升性能,因为同步提交需要等待提交结果
                }
            }
        }catch (Exception e){
            //处理异常
        }
        finally {
            //在consumer关闭之前进行同步提交,保证所有offset在程序退出之前提交一次
            consumer.commitSync();
            close();
        }
    }

    public void close() {
        isRunning = false;
        if (consumer != null) {
            consumer.close();
        }
    }
}

  • 丢失数据(最多一次消费语义实现):在消费数据业务处理前进行offset提交,可以保证最多一次消费,在后续数据业务处理程序出现故障,将导致数据丢失
    代码实现
package com.huawei.kafka.consumer;

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;

import java.time.Duration;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
import java.util.Properties;

/**
 * @author: xuqiangnj@163.com
 * @date: 2019/5/3 13:13
 * @description:异步方式提交
 */
public class CommitBeforeHandleConsumer {

    private static Properties props = new Properties();
    static {
        props.put("bootstrap.servers", "192.168.142.139:9092");
        props.put("group.id", "Test");
        props.put("enable.auto.commit", false);//注意这里设置为手动提交方式
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    }

    final KafkaConsumer<String, String> consumer;

    private volatile boolean isRunning = true;

    public CommitBeforeHandleConsumer(String topicName) {
        consumer = new KafkaConsumer<String, String>(props);
        consumer.subscribe(Arrays.asList(topicName));
    }

    //这里使用异步提交和同步提交的组合方式
    public void receiveMsg() {
        try {
            while (isRunning) {
                ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
                if (!consumerRecords.isEmpty()) {
                    consumer.commitAsync();//在业务处理前提交offset
                    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                        /*System.out.println("TopicName: " + consumerRecord.topic() + " Partition:" +
                                consumerRecord.partition() + " Offset:" + consumerRecord.offset() + "" +
                                " Msg:" + consumerRecord.value());*/
                        //进行逻辑处理
                        //handle(consumerRecord);
                    }
                }
            }
        }catch (Exception e){
            //处理异常
        }
        finally {
            close();
        }
    }

    public void close() {
        isRunning = false;
        if (consumer != null) {
            consumer.close();
        }
    }
}

精确一次消费实现

从kafka的消费机制,我们可以得到是否能够精确的消费关键在消费进度信息的准确性,如果能够保证消费进度的准确性,也就保证了消费数据的准确性

  • 数据有状态:可以根据数据信息进行确认数据是否重复消费,这时候可以使用手动提交的最少一次消费语义实现,即使消费的数据有重复,可以通过状态进行数据去重,以达到幂等的效果
  • 存储数据容器具备幂等性:在数据存入的容器具备天然的幂等(比如ElasticSearch的put操作具备幂等性,相同的数据多次执行Put操作和一次执行Put操作的结果是一致的),这样的场景也可以使用手动提交的最少一次消费语义实现,由存储数据端来进行数据去重
  • 数据无状态,并且存储容器不具备幂等:这种场景需要自行控制offset的准确性,今天文章主要说明这种场景下的处理方式,这里数据不具备状态,存储使用关系型数据库,比如MySQL
    这里简单说明一下实现思路
    1)利用consumer api的seek方法可以指定offset进行消费,在启动消费者时查询数据库中记录的offset信息,如果是第一次启动,那么数据库中将没有offset信息,需要进行消费的元数据插入,然后从offset=0开始消费
    2)关系型数据库具备事务的特性,当数据入库时,同时也将offset信息更新,借用关系型数据库事务的特性保证数据入库和修改offset记录这两个操作是在同一个事务中进行
    3)使用ConsumerRebalanceListener来完成在分配分区时和Relalance时作出相应的处理逻辑

记录kafka信息表设计

create table kafka_info(
	topic_group_partition varchar(32) primary key, //主题+组名+分区号 这里冗余设计方便通过这个主键进行更新提升效率 
	topic_group varchar(30), //主题和组名
	partition_num tinyint,//分区号
	offsets bigint default 0 //offset信息
);

代码实现

package com.huawei.kafka.consumer;

import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.time.Duration;
import java.util.*;

/**
 * @author: xuqiangnj@163.com
 * @date: 2019/5/3 14:36
 * @description:精确一次消费实现
 */
public class AccurateConsumer {

    private static final Properties props = new Properties();

    private static final String GROUP_ID = "Test";

    static {
        props.put("bootstrap.servers", "192.168.142.139:9092");
        props.put("group.id", GROUP_ID);
        props.put("enable.auto.commit", false);//注意这里设置为手动提交方式
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    }

    final KafkaConsumer<String, String> consumer;

    //用于记录每次消费时每个partition的最新offset
    private Map<TopicPartition, Long> partitionOffsetMap;

    //用于缓存接受消息,然后进行批量入库
    private List<Message> list;

    private volatile boolean isRunning = true;

    private final String topicName;

    private final String topicNameAndGroupId;

    public AccurateConsumer(String topicName) {
        this.topicName = topicName;
        topicNameAndGroupId = topicName + "_" + GROUP_ID;
        consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Arrays.asList(topicName), new HandleRebalance());
        list = new ArrayList<>(100);
        partitionOffsetMap = new HashMap<>();
    }

    //这里使用异步提交和同步提交的组合方式
    public void receiveMsg() {
        try {
            while (isRunning) {
                ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
                if (!consumerRecords.isEmpty()) {
                    for (TopicPartition topicPartition : consumerRecords.partitions()) {
                        List<ConsumerRecord<String, String>> records = consumerRecords.records(topicPartition);
                        for (ConsumerRecord<String, String> record : records) {
                            //使用fastjson将记录中的值转换为Message对象,并添加到list中
                            list.addAll(JSON.parseArray(record.value(), Message.class));
                        }
                        //将partition对应的offset信息添加到map中,入库时将offset-partition信息一起进行入库
                        partitionOffsetMap.put(topicPartition, records.get(records.size() - 1)
                                .offset() + 1);//记住这里一定要加1,因为下次消费的位置就是从+1的位置开始
                    }
                }
                //如果list中存在有数据,则进行入库操作
                if (list.size() > 0) {
                    boolean isSuccess = insertIntoDB(list, partitionOffsetMap);
                    if (isSuccess) {
                        //将缓存数据清空,并将offset信息清空
                        list.clear();
                        partitionOffsetMap.clear();
                    }
                }
            }
        } catch (Exception e) {
            //处理异常
        } finally {
            //offset信息由我们自己保存,提交offset其实没有什么必要
            //consumer.commitSync();
            close();
        }

    }

    private boolean insertIntoDB(List<Message> list, Map<TopicPartition, Long> partitionOffsetMap) {
        Connection connection = getConnection();//获取数据库连接 自行实现
        boolean flag = false;
        try {
            //设置手动提交,让插入数据和更新offset信息在一个事务中完成
            connection.setAutoCommit(false);
            insertMessage(list);//将数据进行入库 自行实现
            updateOffset(partitionOffsetMap);//更新offset信息 自行实现
            connection.commit();
            flag = true;
        } catch (SQLException e) {
            try {
                //出现异常则回滚事务
                connection.rollback();
            } catch (SQLException e1) {
                //处理异常
            }
        }
        return flag;
    }

    //获取数据库连接 自行实现
    private Connection getConnection() {
        return null;
    }

    public void close() {
        isRunning = false;
        if (consumer != null) {
            consumer.close();
        }
    }

    private class HandleRebalance implements ConsumerRebalanceListener {

        @Override
        public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
            //发生Rebalance时,只需要将list中数据和记录offset信息清空即可
            //这里为什么要清除数据,应为在Rebalance的时候有可能还有一批缓存数据在内存中没有进行入库,
            //并且offset信息也没有更新,如果不清除,那么下一次还会重新poll一次这些数据,将会导致数据重复
            list.clear();
            partitionOffsetMap.clear();
        }

        @Override
        public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
            //获取对应Topic的分区数
            List<PartitionInfo> partitionInfos = consumer.partitionsFor(topicName);
            Map<TopicPartition, Long> partitionOffsetMapFromDB = getPartitionOffsetMapFromDB
                    (partitionInfos.size());

            //在分配分区时指定消费位置
            for (TopicPartition partition : partitions) {
                //如果在数据库中有对应partition的信息则使用,否则将默认从offset=0开始消费
                if (partitionOffsetMapFromDB.get(partition) != null) {
                    consumer.seek(partition, partitionOffsetMapFromDB.get(partition));
                } else {
                    consumer.seek(partition, 0L);
                }
            }
        }
    }
    /**
     * 从数据库中查询分区和offset信息
     * @param size 分区数量
     * @return 分区号和offset信息
     */
    private Map<TopicPartition, Long> getPartitionOffsetMapFromDB(int size) {
        Map<TopicPartition, Long> partitionOffsetMapFromDB = new HashMap<>();
        //从数据库中查询出对应信息
        Connection connection = getConnection();//获取数据库连接 自行实现
        PreparedStatement preparedStatement = null;
        ResultSet resultSet = null;
        String querySql = "SELECT partition_num,offsets from kafka_info WHERE topic_group = ?";
        try {
            preparedStatement = connection.prepareStatement(querySql);
            preparedStatement.setString(1, topicNameAndGroupId);
            resultSet = preparedStatement.executeQuery();
            while (resultSet.next()) {
                partitionOffsetMapFromDB.put(new TopicPartition(topicName, resultSet.getInt(1)),
                        resultSet.getLong(2));
            }
            //判断数据库是否存在所有的分区的信息,如果没有,则需要进行初始化
            if (partitionOffsetMapFromDB.size() < size) {
                connection.setAutoCommit(false);
                StringBuilder sqlBuilder = new StringBuilder();
                //partition分区号是从0开始,如果有10个分区,那么分区号就是0-9
                /*这里拼接插入数据 格式 INSERT INTO kafka_info(topic_group_partition,topic_group,partition_num) VALUES
                (topicNameAndGroupId_0,topicNameAndGroupId,0),(topicNameAndGroupId_1, topicNameAndGroupId,1)....*/
                for (int i = 0; i < size; i++) {
                    sqlBuilder.append("(").append
                            (topicNameAndGroupId).append("_").append(i).append(",").append
                            (topicNameAndGroupId).append(",").append(i).append("),");
                }
                //将最后一个逗号去掉加上分号结束
                sqlBuilder.deleteCharAt(sqlBuilder.length() - 1).append(";");
                preparedStatement = connection.prepareStatement("INSERT INTO kafa_info" +
                        "(topic_group_partition,topic_group,partition_num) VALUES " + sqlBuilder.toString());
                preparedStatement.execute();
                connection.commit();
            }
        } catch (SQLException e) {
            //处理异常 回滚事务 这里应该结束程序 排查错误
            try {
                connection.rollback();
            } catch (SQLException e1) {
                //打印日志 排查错误信息
            }

        } finally {
            try {
                if (resultSet != null) {
                    resultSet.close();
                }
                if (preparedStatement != null) {
                    preparedStatement.close();
                }
                if (connection != null) {
                    connection.close();
                }
            } catch (SQLException e) {
                //处理异常 打印日志即可 关闭资源失败
            }
        }
        return partitionOffsetMapFromDB;
    }
}

数据对象

package com.huawei.kafka.consumer;

/**
 * @author: xuqiangnj@163.com
 * @date: 2019/5/3 14:07
 * @description: Message对象 这里模拟数据
 */
public class Message {

    private String id;

    private String name;

    private Syring desc;
    
    private Date time;
     
    //get set toString 方法省略
}

这种实现方式对于以下故障场景测试通过,虽然不能说所有故障场景均可以保证精确一次消费,但目前基本覆盖大部分故障场景

  • 一个消费者组中的某个消费者频繁加入组或离开组
  • 直接kill消费应用程序
  • 故障kafka集群中某个节点
  • 故障客户端网络,使其不能连接kafka server端
  • 直接重启应用程序所在虚拟机

总结

这里主要使用自己管理offset的方式来确保数据和offset信息是同时变化的,通过数据库事务的特性来保证一致性和原子性。如果有不清楚的地方可以留言随时交流,或者有更好的实现方式也请不吝赐教
(转载请注明出处)

已标记关键词 清除标记
<p> 本套教程版权归张老师所有 </p> <p> <br /></p> <p> 本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 </p> <p> <br /></p> <p> 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 </p> <p> <br /></p> <p> 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 </p> <p> <br /></p> <p> <span style="color:#424242;">本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第9季。</span> </p>
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页