spark streaming -过滤黑名单

原创 2018年04月16日 09:27:14

通过spark streaming实时统计过滤黑名单,稍微改动一下,可以结合到真实企业案例中

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;

/**
 * 基于transform的实时广告计费日志黑名单过滤
 * @author Administrator
 *
 */
public class TransformBlacklist {
   
   @SuppressWarnings("deprecation")
   public static void main(String[] args) {
      SparkConf conf = new SparkConf()
            .setMaster("local[2]")
            .setAppName("TransformBlacklist");  
      JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
      
      // 用户对我们的网站上的广告可以进行点击
      // 点击之后,是不是要进行实时计费,点一下,算一次钱
      // 但是,对于那些帮助某些无良商家刷广告的人,那么我们有一个黑名单
      // 只要是黑名单中的用户点击的广告,我们就给过滤掉
      
      // 先做一份模拟的黑名单RDD
      List<Tuple2<String, Boolean>> blacklist = new ArrayList<Tuple2<String, Boolean>>();
      blacklist.add(new Tuple2<String, Boolean>("tom", true));  
      final JavaPairRDD<String, Boolean> blacklistRDD = jssc.sc().parallelizePairs(blacklist);
      
      // 这里的日志格式,就简化一下,就是date username的方式 nc -l -p 8888 127.0.0.1
      JavaReceiverInputDStream<String> adsClickLogDStream = jssc.socketTextStream("127.0.0.1", 6666);
      adsClickLogDStream.print();
      
      // 所以,要先对输入的数据,进行一下转换操作,变成,(username, date username)
      // 以便于,后面对每个batch RDD,与定义好的黑名单RDD进行join操作
      JavaPairDStream<String, String> userAdsClickLogDStream = adsClickLogDStream.mapToPair(
            
            new PairFunction<String, String, String>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Tuple2<String, String> call(String adsClickLog)
                     throws Exception {
                  return new Tuple2<String, String>(
                        adsClickLog.split(" ")[1], adsClickLog);
               }
               
            });
      
      // 然后,就可以执行transform操作了,将每个batch的RDD,与黑名单RDD进行join、filter、map等操作
      // 实时进行黑名单过滤
      JavaDStream<String> validAdsClickLogDStream = userAdsClickLogDStream.transform(
            
            new Function<JavaPairRDD<String,String>, JavaRDD<String>>() {

               private static final long serialVersionUID = 1L;

               @Override
               public JavaRDD<String> call(JavaPairRDD<String, String> userAdsClickLogRDD)
                     throws Exception {
                  // 这里为什么用左外连接?
                  // 因为,并不是每个用户都存在于黑名单中的
                  // 所以,如果直接用join,那么没有存在于黑名单中的数据,会无法join到
                  // 就给丢弃掉了
                  // 所以,这里用leftOuterJoin,就是说,哪怕一个user不在黑名单RDD中,没有join到
                  // 也还是会被保存下来的
                  JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> joinedRDD = 
                        userAdsClickLogRDD.leftOuterJoin(blacklistRDD);
                  
                  // 连接之后,执行filter算子
                  JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> filteredRDD = 
                        joinedRDD.filter(
                              
                              new Function<Tuple2<String, 
                                    Tuple2<String,Optional<Boolean>>>, Boolean>() {

                                 private static final long serialVersionUID = 1L;

                                 @Override
                                 public Boolean call(
                                       Tuple2<String, 
                                             Tuple2<String, Optional<Boolean>>> tuple)
                                       throws Exception {
                                    // 这里的tuple,就是每个用户,对应的访问日志,和在黑名单中
                                    // 的状态
                                    if(tuple._2._2().isPresent() && 
                                          tuple._2._2.get()) {  
                                       return false;
                                    }
                                    return true;
                                 }
                                 
                              });
                  
                  // 此时,filteredRDD中,就只剩下没有被黑名单过滤的用户点击了
                  // 进行map操作,转换成我们想要的格式
                  JavaRDD<String> validAdsClickLogRDD = filteredRDD.map(
                        
                        new Function<Tuple2<String,Tuple2<String,Optional<Boolean>>>, String>() {

                           private static final long serialVersionUID = 1L;

                           @Override
                           public String call(
                                 Tuple2<String, Tuple2<String, Optional<Boolean>>> tuple)
                                 throws Exception {
                              return tuple._2._1;
                           }
                           
                        });
                  
                  return validAdsClickLogRDD;
               }
               
            });
      
      // 打印有效的广告点击日志
      // 其实在真实企业场景中,这里后面就可以走写入kafka、ActiveMQ等这种中间件消息队列
      // 然后再开发一个专门的后台服务,作为广告计费服务,执行实时的广告计费,这里就是只拿到了有效的广告点击
      validAdsClickLogDStream.print();
      
      jssc.start();
      jssc.awaitTermination();
      jssc.close();
   }
   
}

Spark-Spark Streaming-广告点击的在线黑名单过滤

任务广告点击的在线黑名单过滤 使用 nc -lk 9999 在数据发送端口输入若干数据,比如:1375864674543 Tom 1375864674553 Spy 1375864674571...
  • youdianjinjin
  • youdianjinjin
  • 2016-05-11 12:29:15
  • 2102

通过过滤黑名单案例对SparkStreaming 透彻理解

SparkStreaming是随着流进来数据按照时间为单位生成job,然后触发job在cluster执行的一个流式处理引擎,实质上是加上了时间维度的批处理。DStream是一个RDD的集合,对DStr...
  • xiaonaughty
  • xiaonaughty
  • 2016-05-19 16:44:54
  • 1844

用spark streaming实现黑名单实时过滤

项目介绍: 本项目用spark streaming实现简单的黑名单实时过滤,用scala语言编写,用到的知识点如下: 1.RDD,弹性分布式数据集 2.ssc.socketTextStream("lo...
  • qq_37581329
  • qq_37581329
  • 2017-09-03 11:47:20
  • 141

sparkstreaming实现过滤黑名单

sparkstreaming实现过滤黑名单
  • high2011
  • high2011
  • 2016-06-04 17:22:14
  • 956

SparkStreaming通过读取文件动态黑名单过滤

SparkStream通过读取文件动态黑名单过滤定时从blackName中拷贝文件到write文件夹中public class CopyFile { public static void co...
  • qq_28095827
  • qq_28095827
  • 2017-11-26 17:11:23
  • 143

Spark 实现黑名单实时过滤

黑名单实时过滤 一、实验介绍 1.1 实验内容 本节课主要讲解 Spark 的 RDD 操作,让您对 Spark 算子的特性快速了解。通过演示案例实时黑名单过滤,让您切身体会到 RDD 的强大功...
  • oxuzhenyi
  • oxuzhenyi
  • 2017-07-02 16:37:20
  • 1018

第106课: Spark Streaming电商广告点击综合案例黑名单过滤实现

第106课:  Spark Streaming电商广告点击综合案例黑名单过滤实现 /*王家林老师授课http://weibo.com/ilovepains  每天晚上20:00YY频道现场授课频道6...
  • duan_zhihua
  • duan_zhihua
  • 2016-05-19 21:36:40
  • 1161

第108讲: Spark Streaming电商广告点击综合案例动态黑名单过滤真正的实现代码

package com.dt.streaming; import java.sql.Connection; import java.sql.DriverManager; import java.sq...
  • qq_21234493
  • qq_21234493
  • 2016-05-25 07:04:49
  • 1145

动手实战联合使用Spark Streaming、Broadcast、Accumulator计数器实现在线黑名单过滤和计数

本博文主要包括: 1、Spark Streaming与Broadcast、Accumulator联合 2、在线黑名单过滤和计数实战一、Spark Streaming与Broadcast、Accum...
  • erfucun
  • erfucun
  • 2016-08-31 17:10:45
  • 2118

第108课: Spark Streaming电商广告点击综合案例动态黑名单过滤真正的实现代码

第108课: Spark Streaming电商广告点击综合案例动态黑名单过滤真正的实现代码 /*王家林老师授课http://weibo.com/ilovepains  每天晚上20:00YY频道现...
  • duan_zhihua
  • duan_zhihua
  • 2016-05-21 22:17:55
  • 1053
收藏助手
不良信息举报
您举报文章:spark streaming -过滤黑名单
举报原因:
原因补充:

(最多只允许输入30个字)