spark streaming-基于updatestatebykey全局统计

本文主要通过spark streaming的updatestatebykey进行单词的缓存的全局统计

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;

/**
 * 基于updateStateByKey算子实现缓存机制的实时wordcount程序
 * @author Administrator
 *
 */
public class UpdateStateByKeyWordCount {

   public static void main(String[] args) {
      SparkConf conf = new SparkConf()
            .setMaster("local[2]")
            .setAppName("UpdateStateByKeyWordCount");  
      JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
      
      // 第一点,如果要使用updateStateByKey算子,就必须设置一个checkpoint目录,开启checkpoint机制
      // 这样的话才能把每个key对应的state除了在内存中有,那么是不是也要checkpoint一份
      // 因为你要长期保存一份key的state的话,那么spark streaming是要求必须用checkpoint的,以便于在
      // 内存数据丢失的时候,可以从checkpoint中恢复数据
      
      // 开启checkpoint机制,很简单,只要调用jssc的checkpoint()方法,设置一个hdfs目录即可
      jssc.checkpoint("hdfs://spark1:9000/wordcount_checkpoint");  
      
      // 然后先实现基础的wordcount逻辑
      JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);
      
      JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

         private static final long serialVersionUID = 1L;

         @Override
         public Iterable<String> call(String line) throws Exception {
            return Arrays.asList(line.split(" "));  
         }
         
      });
      
      JavaPairDStream<String, Integer> pairs = words.mapToPair(
            
            new PairFunction<String, String, Integer>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Tuple2<String, Integer> call(String word)
                     throws Exception {
                  return new Tuple2<String, Integer>(word, 1);
               }
               
            });
      
      // 到了这里,就不一样了,之前的话,是不是直接就是pairs.reduceByKey
      // 然后,就可以得到每个时间段的batch对应的RDD,计算出来的单词计数
      // 然后,可以打印出那个时间段的单词计数
      // 但是,有个问题,你如果要统计每个单词的全局的计数呢?
      // 就是说,统计出来,从程序启动开始,到现在为止,一个单词出现的次数,那么就之前的方式就不好实现
      // 就必须基于redis这种缓存,或者是mysql这种db,来实现累加
      
      // 但是,我们的updateStateByKey,就可以实现直接通过Spark维护一份每个单词的全局的统计次数
      JavaPairDStream<String, Integer> wordCounts = pairs.updateStateByKey(
            
            // 这里的Optional,相当于Scala中的样例类,就是Option,可以这么理解
            // 它代表了一个值的存在状态,可能存在,也可能不存在
            new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {

               private static final long serialVersionUID = 1L;

               // 这里两个参数
               // 实际上,对于每个单词,每次batch计算的时候,都会调用这个函数
               // 第一个参数,values,相当于是这个batch中,这个key的新的值,可能有多个吧
               // 比如说一个hello,可能有2个1,(hello, 1) (hello, 1),那么传入的是(1,1)
               // 第二个参数,就是指的是这个key之前的状态,state,其中泛型的类型是你自己指定的
               @Override
               public Optional<Integer> call(List<Integer> values,
                     Optional<Integer> state) throws Exception {
                  // 首先定义一个全局的单词计数
                  Integer newValue = 0;
                  
                  // 其次,判断,state是否存在,如果不存在,说明是一个key第一次出现
                  // 如果存在,说明这个key之前已经统计过全局的次数了
                  if(state.isPresent()) {
                     newValue = state.get();
                  }
                  
                  // 接着,将本次新出现的值,都累加到newValue上去,就是一个key目前的全局的统计
                  // 次数
                  for(Integer value : values) {
                     newValue += value;
                  }
               
                  return Optional.of(newValue);  
               }
               
            });
      
      // 到这里为止,相当于是,每个batch过来是,计算到pairs DStream,就会执行全局的updateStateByKey
      // 算子,updateStateByKey返回的JavaPairDStream,其实就代表了每个key的全局的计数
      // 打印出来
      wordCounts.print();
      
      jssc.start();
      jssc.awaitTermination();
      jssc.close();
   }
   
}

阅读更多
文章标签: spark streaming
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭