- 博客(9)
- 收藏
- 关注
原创 docker运行mysql并远程连接踩坑
docker运行mysql并远程连接踩坑一、安装docker删除旧版本docker$ sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate
2021-02-23 01:04:32
271
原创 HTTP和HTTPS
一. HTTPHTTP的缺点通信使用明文(不加密),内容可能被窃听不验证通信双方的身份,因此可能遭遇伪装无法证明报文的完整性,所以有可能已造篡改二. HTTPS1. 加密技术对称加密加密和解密都用同一把秘钥,又称为共享秘钥。但是在传输过程中,如何将秘钥安全的传输给对方依然是问题。假设秘钥可以安全的传输到对方,那么报文也就可以安全传输了。非对称加密非对称加密,又称公开密钥。指加密和解密用两把不同的秘钥。用发送方用公钥加密,接收方用私钥解密。通信双方,首先将自己的公钥发送给对方,然
2021-01-21 21:55:26
452
原创 ==、equals和hashcode
==、equals和hashcode一. == 与 equals的区别在java中,==表示比较两个对象的内存地址。如果对于一个对象,没有重写equals的话,那么就会执行Object类里面的equals()方法(因为所有的类都是继承自Object)。而Object类中的equals()方法是直接用比较,也就是说如果一个类没有重写equals那么其equals方法等价于 { if(instance == null) { instance = new SingleTon(); } return instance; }}以时间换空间饿汉模式
2021-01-21 17:36:37
117
原创 二叉树遍历及树类型的判断
二叉树及树类型的判断内容:树定义,前、中、后 、层次遍历,树的高度,判断树是否平衡、是否是二叉搜索树、是否是AVL树一. 定义typedef struct TNode *PtrToTNode;typedef PtrToTNode BinTree;struct TNode{ TElemType data; BinTree left; BinTree right;}; 二. 树的基本操作2.1 树的创建BinTree CreateBinTree(){ BinTree T; in
2020-07-28 14:09:36
377
原创 Request与Response相关注解
一、摘要@RequestParam获取参数@PathVariable接收参数,参数值需要在url进行占位@RequestBody将 HTTP 请求正文插入方法中@ResponseBody将返回结果写入Http响应文中二、详解1、@RequestParamContent-Type必须是application/x-www-form-urlencoded也就是说RequestParam不可以接收json数据(application/json)Reque
2020-06-13 23:36:42
533
原创 Mybatis配置文件注意事项
Mybatis配置文件注意事项要注意顺序问题Mybatis配置文件中各标签的位置顺序如下: properties, settings, typeAliases, typeHandlers, objectFactory,objectWrapperFactory, plugins, environments, databaseIdProvider, mappers错误顺序<?xml version="1.0" encoding="UTF-8"
2020-06-13 23:31:46
226
原创 配置C3P0数据库连接池踩坑
问题看到很多教程都写的是,在src目录下创建配置文件c3p0-config.xml于是我也照做了,但是仍然无法运行抛出异常No suitable driver一开始一直找在找数据库连接问题,可能是mysql版本太高,要配置成jdbc:mysql://localhost:3306/test?serverTimezone=UTC&useUnicode=true&characterEncoding=utf8&useSSL=true"这样?但是仍然出错。解决
2020-06-13 23:30:28
274
原创 排序算法总结(C语言)
排序算法学习总结(C语言)总结包括:冒泡排序、选择排序、插入排序、希尔排序、堆排序、归并排序、快速排序、桶排序。冒泡排序(BubbleSort)冒泡排序是相邻两个数进行比较每次把较大的数移到后面,每一趟执行完成之后,最大数都会被移到该趟的最后面。时间复杂度最好情况最坏情况额外空间复杂度稳定性O(n^2)O(n^2)O(n^2)O(1)稳定void B...
2020-03-29 20:48:50
231
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人