经典遗传算法及MATLAB实例

1. 遗传算法简单介绍

1.1 理论基础

整个算法的基础就是达尔文的生物进化论,“物竞天择,适者生存” 这句话已经是常识了。

用雪兔做一个引子吧:

东北那旮瘩,有群原始雪兔,刚从未知物种进化而来,五颜六色(表现型)漂亮极了,称之为 I(0)。
(注意:种群初始化)

入夏了,雪兔们出来觅食,浅色兔在草地中无所遁形,被雪狐收割了一波(大批浅色+小批深色)。
入冬了,雪兔们出来觅食,深色兔在雪地中光彩夺目,被雪狐收割了一波(大批深色+小批浅色)。
(注意:自然选择过程)

春天到了,又到了兔兔们生孩的季节,雪兔们染色体内的基因进行 重组/不重组 ,产生一批受精卵。
(注意:交叉遗传过程)

受精卵内的生命活动非常强烈,造成了基因的 突变/不突变,产生了各种各样奇怪的小雪兔。
(注意:基因变异过程)

老雪兔们完成了自己繁衍的使命,全部不知所踪。留下新生代,继续在各种威胁下苟活,这一代叫 I(1)。

再次入冬入夏,雪兔们又出来觅食。。。。。。再次入冬,觅食。。。。。。入冬,觅食。。。。。。

就这样,50年后,基因突变和重组造就了种神奇的兔子:夏天褐色,冬天白色,可以轻易躲避雪狐的追捕

再次入冬入夏,雪兔们又出来觅食。。。。。。再次入冬,觅食。。。。。。入冬,觅食。。。。。。

这样,50年后,雪地里基本上见不到五颜六色的雪兔了,这时候雪兔们达到了兔生巅峰!

这就是遗传算法的理论基础,自然选择、交叉、变异、迭代,最终获得最优解。

注意:算法是根据表现型来进行选择,最终选出最优的表现型及其对应的基因。

1.2 算法要点

1.1 编码

编码是为了把我们的输入参数变成染色体(每个个体只有一条染色体),以便于进行交叉和遗传运算。

例如我们把雪兔的颜色进行划分, 0-255 (表现型)代表 黑->白 的不同程度,0就是纯黑的,255就是纯白的。

我们这里只谈一下简单的二进制编码,二进制编码中的每一个二进制位是一个基因,整个数字为染色体。

那么0-255共有256阶(表现型),我们可以用8位2进制数来表示(基因型)。

兔色为0的编码为 00000000,兔色为2的编码为 00000010,兔色为255的编码为 11111111。

1.2 适应度函数

适应度函数就是个体对环境的适应度,适应度越强的越能产生后代,保留自己的基因及表现型。

这里,我们假设灰色兔子的适应能力最强,即兔色为128的兔子不会被吃掉,设定函数为:

在这里插入图片描述

是一个最大值为128的分段函数,图像如下:
在这里插入图片描述
适应度函数的极值点一般是未知的,这里我们为了演示方便,就先展示出来。

1.3 基本流程

流程就和雪兔故事一样简单,如下所示:

在这里插入图片描述

注意:迭代的终止条件可以不是最大迭代次数,比如规定为种群适应度值的方差小于某个值(即种群表现型趋于一致)。

2. 代码实例(MATLAB)

2.1 代码汇总

遗传算法代码(通用代码):

function [bestChromosome,fitnessBest]=GA(numOfChromosome,numOfGene,iterationNum)
%% 函数功能:执行基于自适应遗传算法的卸载决策
%   输入:
%       numOfChromosome:染色体数量,即迭代的种群大小
%       numOfGene:基因的数量,即所用二进制编码的位数
%       iterationNum:迭代的总次数,达到迭代次数即终止迭代
%   输出:
%       bestChromosome:最优的染色体(即最优的输入)
%       fitnessBest:最优的适应度值(即最优的结果)

%% 随机生成初始种群,种群大小为numOfChromosome,染色体中基因数为numOfGene
% lastPopulation:上一代的种群(染色体)
% newPopulation:新一代的种群(染色体)
% randi([0,1])会产生0或1的整数
lastPopulation=randi([0,1],numOfChromosome,numOfGene);
newPopulation=zeros(numOfChromosome,numOfGene);

%% 进行遗传迭代,直至达到最大迭代次数iterationNum
for iteration=1:iterationNum
    %% 计算所有个体(染色体)的适应度,一共有numOfChromosome个适应度值
    fitnessAll=zeros(1,numOfChromosome);
    for i=1:numOfChromosome
        individual=lastPopulation(i,:);
        fitnessAll(i)=fitnessFunc(individual);
    end
    
    %% 如果达到最大迭代次数,跳出(不能再进行选择遗传和变异了)
    if iteration==iterationNum
        break;
    end
    
    %% 使用轮盘赌法选择numOfChromosome条染色体,种群中个体总数不变
    fitnessSum=sum(fitnessAll);
    fitnessProportion=fitnessAll/fitnessSum;
    % 使用随机数进行numOfChromosome次选择,保持种群中个体数量不变
    for i=1:numOfChromosome
        probability=rand(1);
        proportionSum=0;
        chromosomeIndex=1;
        for j=1:numOfChromosome
            proportionSum=proportionSum+fitnessProportion(j);
            if proportionSum>=probability
                chromosomeIndex=j;
                break;
            end
        end
        newPopulation(i,:)=lastPopulation(chromosomeIndex,:);
    end

    %% 将染色体进行配对,执行单点交叉
    lastPopulation=newPopulation;
    % 生成从1到numOfChromosome的无序排列,每两个相邻数字进行配对
    coupleAllIndex=randperm(numOfChromosome);
    for i=1:floor(numOfChromosome/2)
        coupleOneIndex=coupleAllIndex(2*i-1:2*i);
        % 定义两条染色体交叉的概率,自己选择
        probability=0.6;
        % 如果生成的随机数在交叉概率内,执行交叉操作
        if rand(i)<probability
            % 随机生成交叉的基因点,将两条基因进行交叉
            crossPosition=randi([1,numOfGene],1);
            newPopulation(coupleOneIndex(1),crossPosition:end)=lastPopulation(coupleOneIndex(2),crossPosition:end);
            newPopulation(coupleOneIndex(2),crossPosition:end)=lastPopulation(coupleOneIndex(1),crossPosition:end);
        end
    end

    %% 对每条染色体执行基本位变异操作
    lastPopulation=newPopulation;
    for i=1:numOfChromosome
        % 定义染色体变异的概率,自己选择
        probability=0.2;
        % 如果生成的随机数在变异概率内,执行变异操作
        if rand(1)<probability
            % 选择变异的位置
            mutatePosition=randi([1,numOfGene],1);
            % 将对应基因位置的二进制数反转
            if(lastPopulation(i,mutatePosition)==0)
                newPopulation(i,mutatePosition)=1;
            else
                newPopulation(i,mutatePosition)=0;
            end
        end
    end 
    
    %% 完成了一次迭代,更新种群
    lastPopulation=newPopulation;
end

%% 遗传迭代结束后,获得最优适应度值和对应的基因
fitnessBest=max(fitnessAll);
bestChromosome=newPopulation(find(fitnessAll==fitnessBest,1),:);

雪兔例子的适应度计算代码:

function fitness=fitnessFunc(chromosome)
%% 函数功能:计算染色体的表现型及其适应度
% 输入:
%       chromosome:染色体的基因序列
% 输出:
%       fitness:染色体(个体)的适应度值

%% 计算雪兔染色体对应表现型
len=length(chromosome);
numList=2.^(len-1:-1:0);
x=sum(chromosome.*numList);

%% 计算表现型对应的适应度
if x<128
    fitness=x;
else
    if x>128
        fitness=256-x;
    else
        fitness=128;
    end
end


2.1 初始化种群

%% 随机生成初始种群,种群大小为numOfChromosome,染色体中基因数为numOfGene
% lastPopulation:上一代的种群(染色体)
% newPopulation:新一代的种群(染色体)
% randi([0,1])会产生0或1的整数
lastPopulation=randi([0,1],numOfChromosome,numOfGene);
newPopulation=zeros(numOfChromosome,numOfGene);

这里使用随机数生成函数生成了numOfChromosome条染色体,每条染色体有numOfGene个基因。

将生成的种群放入lastPopulation中,每一行是一条染色体。

newPopulation相当于一个辅助数组,存储生成种群的中间结果。

2.2 计算适应度

    %% 计算所有个体(染色体)的适应度,一共有numOfChromosome个适应度值
    fitnessAll=zeros(1,numOfChromosome);
    for i=1:numOfChromosome
        individual=lastPopulation(i,:);
        fitnessAll(i)=fitnessFunc(individual);
    end

计算种群中所有个体的适应度,即把每一条染色体(个体)都放入适应度函数中,得到适应度结果。

2.3 迭代终止判断

    %% 如果达到最大迭代次数,跳出(不能再进行选择遗传和变异了)
    if iteration==iterationNum
        break;
    end

计算完适应度,如果达到终止条件,就不再进行选择、遗传和变异了。

否则你跳出循环时,种群适应度与计算的的适应度不匹配。

另一种方案:执行选择、遗传、变异,跳出循环后再次计算适应度即可。

2.4 自然选择(轮盘赌法)

    %% 使用轮盘赌法选择numOfChromosome条染色体,种群中个体总数不变
    fitnessSum=sum(fitnessAll);
    fitnessProportion=fitnessAll/fitnessSum;
    % 使用随机数进行numOfChromosome次选择,保持种群中个体数量不变
    for i=1:numOfChromosome
        probability=rand(1);
        proportionSum=0;
        chromosomeIndex=1;
        for j=1:numOfChromosome
            proportionSum=proportionSum+fitnessProportion(j);
            if proportionSum>=probability
                chromosomeIndex=j;
                break;
            end
        end
        newPopulation(i,:)=lastPopulation(chromosomeIndex,:);
    end

计算每个个体适应度占总适应度的比例,总适应度是一个饼图,每个个体占据一定的扇形区域。

在这里插入图片描述

然后生成numOfChromosome个0-1的随机数,随机数落在哪个区域,哪个个体便被生存,可重复选择。

显然,适应度高的个体容易被选择,将自己的基因和表现型遗传下去。

2.5 配对交叉(单点)

    %% 将染色体进行配对,执行单点交叉
    lastPopulation=newPopulation;
    % 生成从1到numOfChromosome的无序排列,每两个相邻数字进行配对
    coupleAllIndex=randperm(numOfChromosome);
    for i=1:floor(numOfChromosome/2)
        coupleOneIndex=coupleAllIndex(2*i-1:2*i);
        % 定义两条染色体交叉的概率,自己选择
        probability=0.6;
        % 如果生成的随机数在交叉概率内,执行交叉操作
        if rand(i)<probability
            % 随机生成交叉的基因点,将两条基因进行交叉
            crossPosition=randi([1,numOfGene],1);
            newPopulation(coupleOneIndex(1),crossPosition:end)=lastPopulation(coupleOneIndex(2),crossPosition:end);
            newPopulation(coupleOneIndex(2),crossPosition:end)=lastPopulation(coupleOneIndex(1),crossPosition:end);
        end
    end

进行遗传的前提是配对,每两条染色体组合成一对,将两者的部分染色体进行交换。

单点交叉,顾名思义,选择染色体上的一个基因点,从这个基因点开始的两条染色体片段互换:

在这里插入图片描述

2.6 变异(基本位变异)

    %% 对每条染色体执行基本位变异操作
    lastPopulation=newPopulation;
    for i=1:numOfChromosome
        % 定义染色体变异的概率,自己选择
        probability=0.2;
        % 如果生成的随机数在变异概率内,执行变异操作
        if rand(1)<probability
            % 选择变异的位置
            mutatePosition=randi([1,numOfGene],1);
            % 将对应基因位置的二进制数反转
            if(lastPopulation(i,mutatePosition)==0)
                newPopulation(i,mutatePosition)=1;
            else
                newPopulation(i,mutatePosition)=0;
            end
        end
    end 

基本位变异就是选择一条染色体上的一个基因点,将其取反。

如染色体 11111111,选择其第四个基因进行基本位变异, 新染色体变为 11101111

2.7 获得最优解

%% 遗传迭代结束后,获得最优适应度值和对应的基因
fitnessBest=max(fitnessAll);
bestChromosome=newPopulation(find(fitnessAll==fitnessBest,1),:);

迭代结束之后,我们求出最大的适应度及其对应的染色体(个体),这就是我们需要的最优个体。

2.8 雪兔遗传结果

我们运行2.1给出的GA函数,在命令行输入以下代码运行:

[bestChromosome,fitnessBest]=GA(40,8,60)

40个染色体进行60次迭代。多次这行代码,发现结果可以不同,如下:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
虽然结果不尽相同,但都接近最优解128,这是遗传算法本身的局限,不一定能获得最优解。

2.9 改善遗传算法的方法

通过2.8我们知道,遗传算法有时候只能逼近最优解,那么有什么方法能让他达到更好的逼近效果呢?

这里有几个方案:

  1. 使用自适应遗传和变异概率
  2. 增加种群中个体数量
  3. 增大迭代次数
  4. 使用双点交叉法
  5. 采用多样的变异方法
  6. 更改编码方式(某些情况)
  7. 更换适应度函数,将个体适应度的差距拉大
  8. 更换选择方法,轮盘赌法是最基本的方法,不科学

大家可以自行了解,以后可能会继续就这几个方面探讨。

3. 多多交流!

  • 147
    点赞
  • 1175
    收藏
    觉得还不错? 一键收藏
  • 42
    评论
遗传算法(Genetic Algorithm)是一种模拟自然选择和遗传机制的搜索算法,常用于求解优化问题。下面以MATLAB为例,介绍遗传算法的一个实例。 假设我们要求解一个简单的函数的最大值,即找到函数的最大值点的坐标。首先,我们需要定义目标函数。这里我们选择一个简单的函数:f(x) = sin(x),其中x为变量。 首先,在MATLAB中创建一个函数文件,命名为"fitness.m"。在该文件中,我们编写计算目标函数值的代码,即f(x) = sin(x)。代码如下: ```matlab function y = fitness(x) y = sin(x); ``` 接下来,在主文件中进行遗传算法的设置和调用。在MATLAB中,可以用遗传算法工具箱函数"ga"实现遗传算法。代码如下: ```matlab % 定义目标函数 fitnessFunction = @fitness; % 定义变量的范围和约束条件 nVars = 1; % 变量个数 lb = -10; % 变量下界 ub = 10; % 变量上界 constraintFunction = []; % 无约束条件 % 设置遗传算法参数 options = gaoptimset('PopulationSize', 50, 'Generations', 100); [x, fval] = ga(fitnessFunction, nVars, [], [], [], [], lb, ub, constraintFunction, options); % 输出结果 disp(['x = ', num2str(x)]); disp(['f(x) = ', num2str(fval)]); ``` 上述代码中,首先定义了目标函数"fitnessFunction",即之前创建的"fitness.m"中的函数。然后,通过设置变量的范围和约束条件定义了问题的参数。接着,通过调用遗传算法工具箱函数"ga"进行遗传算法求解。在这里,我们设置了种群大小为50,迭代次数为100。 最后,输出结果,显示找到的最大值点的坐标和对应的目标函数值。可以看到,遗传算法求解得到的最大值点接近于0,并且目标函数值也接近于1,符合预期结果。 通过这个简单的例子,我们可以看到遗传算法MATLAB中的应用。通过定义目标函数和设置算法参数,可以方便地求解各种优化问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值