【FinE】资产组合理论(3)

前文链接

资产组合理论(2)

两基金分离定理

定理:任一最小方差资产组合 w ∗ w^* w都可以唯一表示成全局最小方差资产组合 w g w_g wg和可分散资产组合 w d w_d wd的资产组合
w ∗ = A w g + ( 1 − A ) w d w^*=Aw_g+(1-A)w_d w=Awg+(1A)wd
其中
A = a c − μ a b Δ A=\frac{ac-\mu ab}{\Delta} A=Δacμab
w ∗ w^* w的收益率方差满足关系式
σ p 2 = ( a μ − 2 b μ + c ) / Δ \sigma_p^2=(a\mu-2b\mu+c)/\Delta σp2=(aμ2bμ+c)/Δ
w g w_g wg w d w_d wd通常称为共同基金,该定理也被称为两基金定理.
性质:设 w u = ( 1 − μ ) w g + u w d , w v = ( 1 − ν ) w g + ν w d w_u=(1-\mu)w_g+uw_d, w_v=(1-\nu)w_g+\nu w_d wu=(1μ)wg+uwd,wv=(1ν)wg+νwd表示任意两个最小方差资产组合,则其协方差为 1 / a + μ μ Δ / ( a b 2 ) 1/a+\mu\mu\Delta/(ab^2) 1/a+μμΔ/(ab2),特别的,全局最小方差资产组合与任何资产或者资产组合协方差都为 1 / a 1/a 1/a.
证明
E ( R u ) = w u T E ( R ) , E ( R ν ) = w ν T E ( R ) \mathbb{E}(R_u)=w_u^T\mathbb{E}(R), \mathbb{E}(R_\nu)=w_\nu^T\mathbb{E}(R) E(Ru)=wuTE(R),E(Rν)=wνTE(R)
计算 c o v ( R u , R v ) cov(R_u, R_v) cov(Ru,Rv)
c o v ( R u , R d ) = ( 1 − μ ) ( 1 − ν ) σ d 2 + μ ν σ d 2 + [ μ ( 1 − ν ) + ν ( 1 − μ ) ] σ g d cov(R_u, R_d)=(1-\mu)(1-\nu)\sigma_d^2+\mu\nu\sigma_d^2+[\mu(1-\nu)+\nu(1-\mu)]\sigma_{gd} cov(Ru,Rd)=(1μ)(1ν)σd2+μνσd2+[μ(1ν)+ν(1μ)]σgd
全局最小方差资产组合与任意资产或者资产组合的协方差为
c o v ( R g , R p ) = w g T V w p = 1 T V − 1 V w p a = 1 a = σ p 2 cov(R_g, R_p)=w_g^T\mathbf{V}w_p=\frac{\mathbf{1}^T\mathbf{V}^{-1}\mathbf{V}w_p}{a}=\frac{1}{a}=\sigma_p^2 cov(Rg,Rp)=wgTVwp=a1TV1Vwp=a1=σp2

有效证券组合

定义:如果一个资产组合对确定的方差有最大期望收益率,同时对确定收益率有最小方差,则称该资产组合为均值-方差有效资产组合.

存在无风险资产的均值-方差模型

设投资者在市场上可以获得 n + 1 n+1 n+1种资产,其中 n n n种风险资产,1种无风险资产;无风险资产的投资权重可以为正,也可以为负,权重为正,表示储蓄,权重为负表示购买风险资产. 约束优化问题为
min ⁡ 1 2 σ p 2 = 1 2 w T V w s . t . ( E ( R ) − r 1 ) T w = μ − r (1) \begin{aligned} &\min \frac{1}{2}\sigma_p^2=\frac{1}{2}\pmb{w}^T\pmb{V}\pmb{w}\\ &s.t.\quad (E(\pmb{R})-r\mathbf{1})^T\pmb{w}= \mu-r \end{aligned}\tag{1} min21σp2=21wwwTVVVwwws.t.(E(RRR)r1)Twww=μr(1)
使用Lagrange乘数法建立增广目标函数 L L L
L = 1 2 w T V w + λ [ μ − r − ( E ( R ) − r 1 ) T w ] L=\frac{1}{2}\pmb{w}^T\pmb{V}\pmb{w}+\lambda[\mu-r-(E(\pmb{R})-r\mathbf{1})^T\pmb{w}] L=21wwwTVVVwww+λ[μr(E(RRR)r1)Twww]
可以求出一阶条件为
L w = V w − λ ( E ( R ) − r 1 ) = 0 L_w=\pmb{V}\pmb{w}-\lambda(E(\pmb{R})-r\mathbf{1})=0 Lw=VVVwwwλ(E(RRR)r1)=0
求解得到风险资产权重 w ∗ \pmb{w}^* www
w ∗ = λ V − 1 ( E ( R ) − r 1 ) (2) \pmb{w}^*=\lambda\pmb{V}^{-1}(E(\pmb{R})-r\mathbf{1})\tag{2} www=λVVV1(E(RRR)r1)(2)
无风险资产权重 w 0 ∗ w_0^* w0
w 0 ∗ = 1 − 1 T w ∗ w_0^*=1-\mathbf{1}^T\pmb{w}^* w0=11Twww
进行如下变量代换
{ μ = E ( R ) T w a = 1 T V − 1 1 b = 1 T V − 1 E ( R ) c = E ( R ) T V − 1 E ( R ) Δ = a c − b 2 (3) \left\{ \begin{aligned} &\mu=E(\pmb{R})^T\pmb{w}\\ &a=\mathbf{1}^T\pmb{V}^{-1}\mathbf{1}\\ &b=\mathbf{1}^T\pmb{V}^{-1}E(\pmb{R})\\ &c=E(\pmb{R})^T\pmb{V}^{-1}E(\pmb{R})\\ &\Delta=ac-b^2 \end{aligned}\tag{3} \right. μ=E(RRR)Twwwa=1TVVV11b=1TVVV1E(RRR)c=E(RRR)TVVV1E(RRR)Δ=acb2(3)
( 2 ) , ( 3 ) (2), (3) (2),(3)带入(1)可以得到
μ − r = ( E ( R ) − r 1 ) T w = λ ( E ( R ) − r 1 ) T V − 1 ( E ( R ) − r 1 ) = λ ( c − 2 r b + r 2 a ) \begin{aligned} \mu-r&=(E(\pmb{R})-r\mathbf{1})^T\pmb{w}=\lambda(E(\pmb{R})-r\mathbf{1})^T\pmb{V}^{-1}(E(\pmb{R})-r\mathbf{1}) \\ &=\lambda(c-2rb+r^2a) \end{aligned} μr=(E(RRR)r1)Twww=λ(E(RRR)r1)TVVV1(E(RRR)r1)=λ(c2rb+r2a)
可以解出 λ \lambda λ值为
λ = μ − r c − 2 r b + r 2 a \lambda=\frac{\mu-r}{c-2rb+r^2a} λ=c2rb+r2aμr
计算出 w ∗ \pmb{w}^* www值为
w ∗ = μ − r c − 2 r b + r 2 a V − 1 ( E ( R ) − r 1 ) \pmb{w}^*=\frac{\mu-r}{c-2rb+r^2a}\pmb{V}^{-1}(E(\pmb{R})-r\mathbf{1}) www=c2rb+r2aμrVVV1(E(RRR)r1)
最小方差组合的方差 σ p 2 \sigma_p^2 σp2
σ p 2 = w T V w = w T λ ( E ( R ) − r 1 ) = λ ( w T E ( R ) − r w T 1 ) = λ ( μ − r ) = ( μ − r ) 2 c − 2 r b + r 2 a \begin{aligned} \sigma_p^2&=\pmb{w}^T\pmb{V}\pmb{w} \\ &=\pmb{w}^T\lambda(E(\pmb{R})-r\mathbf{1})\\ &=\lambda(\pmb{w}^TE(\pmb{R})-r\pmb{w}^T\mathbf{1}) \\ &=\lambda(\mu-r)\\ &=\frac{(\mu-r)^2}{c-2rb+r^2a} \end{aligned} σp2=wwwTVVVwww=wwwTλ(E(RRR)r1)=λ(wwwTE(RRR)rwwwT1)=λ(μr)=c2rb+r2a(μr)2

案例

考虑一个资产组合,预期收益率矩阵为 E ( R ) = [ 0.2 , 0.5 ] T E(\pmb{R})=[0.2, 0.5]^T E(RRR)=[0.2,0.5]T,协方差矩阵 V = [ 1 0 0 1 ] \pmb{V}=\left[\begin{matrix}1 & 0\\0 & 1\end{matrix}\right] VVV=[1001],无风险利率为 0.1 0.1 0.1,预期收益率为 0.2 0.2 0.2,求资产组合的最小方差.

解析

根据公式
σ p 2 = w T V w = ( μ − r ) 2 ( c − 2 r b + r 2 a ) − 1 \sigma_p^2=\pmb{w}^T\pmb{V}\pmb{w}=(\mu-r)^2(c-2rb+r^2a)^{-1} σp2=wwwTVVVwww=(μr)2(c2rb+r2a)1
预处理参数
{ a = 1 T V − 1 1 b = 1 T V − 1 E ( R ) c = E ( R ) T V − 1 E ( R ) \left\{ \begin{aligned} &a=\mathbf{1}^T\pmb{V}^{-1}\mathbf{1} \\ &b=\mathbf{1}^T\pmb{V}^{-1}E(\pmb{R})\\ &c=E(\pmb{R})^T\pmb{V}^{-1}E(\pmb{R}) \end{aligned} \right. a=1TVVV11b=1TVVV1E(RRR)c=E(RRR)TVVV1E(RRR)

代码

import numpy as np
from numpy import dot
from numpy.linalg import inv
def portfolio_min_variance(E, R, V, rf, u):
    V=inv(V)
    a=dot(dot(E, V), E)
    b=dot(dot(E, V), R)
    c=dot(dot(R, V), R)
    return (u-rf)**2/(c-2*rf*b+rf**2*a)
    
def main():
    E=np.ones(2)
    R=np.array([0.2, 0.5])
    V=np.eye(2)
    rf=0.1
    u=0.2
    print('the min variance of portfolio is {:.4f}'.format(portfolio_min_variance(E, R, V, rf, u)))
    
main()

无风险资产对最小方差组合的影响

σ p \sigma_p σp的表达式
σ p = ± μ − r c − 2 r b + r 2 a \sigma_p=\pm\frac{\mu-r}{\sqrt{c-2rb+r^2a}} σp=±c2rb+r2a μr
在几何上表现为通过公共交点 ( 0 , r ) (0, r) (0,r)的两条射线,斜率分别是 ± c − 2 r b + r 2 a \pm \sqrt{c-2rb+r^2a} ±c2rb+r2a ,在均值-均方差平面上分为三种情况 r ≤ μ , r = μ , r > μ r\leq \mu, r=\mu, r>\mu rμ,r=μ,r>μ,其中 μ = b / a \mu=b/a μ=b/a.

r < μ r<\mu r<μ

解出方程为
E ( R p ) = r + σ p c − 2 r b + r 2 a E ( R p ) = r − σ p c − 2 r b + r 2 a E(\pmb{R}_p)=r+\sigma_p\sqrt{c-2rb+r^2a}\\ E(\pmb{R}_p)=r-\sigma_p\sqrt{c-2rb+r^2a} E(RRRp)=r+σpc2rb+r2a E(RRRp)=rσpc2rb+r2a
mv1

r = μ r=\mu r=μ

根据 r = μ = b a r=\mu=\frac{b}{a} r=μ=ab对方程进行简化
E ( R p ) = b a + σ p Δ a E ( R p ) = b a − σ p Δ a E(\pmb{R}_p)=\frac{b}{a}+\sigma_p\sqrt{\frac{\Delta}{a}} \\ E(\pmb{R}_p)=\frac{b}{a}-\sigma_p\sqrt{\frac{\Delta}{a}} E(RRRp)=ab+σpaΔ E(RRRp)=abσpaΔ
mv2

可以发现当 r = μ r=\mu r=μ时,含有无风险资产的最小方差组合在 E ( R p − σ p ) E(\pmb{R}_p-\sigma_p) E(RRRpσp)坐标平面上表现为双曲线的渐近线.

r > μ r>\mu r>μ

无风险收益率大于全局最小方差组合预期收益率在现实中不存在
mv3

存在无风险资产的两基金分离定理

由两基金定理可以知道,最小方差资产组合是两个不同资产组合而成,在存在无风险资产的情况下,一种自然的基金选择为无风险资产和不含任何无风险资产的切点资产组合.

定理:在存在无风险资产的情况下,任一最小方差资产组合 w ∗ \pmb{w}^* www可以唯一表示成无风险资产组合和不含任何无风险资产的切点资产组合的组合 w ˉ t = ( w 0 , w t ) \bar{\pmb{w}}_t=(w_0,\pmb{w}_t) wwwˉt=(w0,wwwt).

其中
{ w 0 = 0 w t = V − 1 ( E ( R ) − r 1 ) b − a r \left\{ \begin{aligned} &w_0=0\\ &\pmb{w}_t=\frac{\pmb{V}^{-1}(E(\pmb{R})-r\mathbf{1})}{b-ar} \end{aligned} \right. w0=0wwwt=barVVV1(E(RRR)r1)
切点出资产组合收益率的均值和方差分别为
{ E ( R t ) = E ( R ) T w t = c − b r b − a r σ t 2 = w t T V w t = c − 2 b r + r 2 a ( b − a r ) 2 \left\{ \begin{aligned} &E(R_t)=E(\pmb{R})^T\pmb{w}_t=\frac{c-br}{b-ar}\\ &\sigma_t^2=\pmb{w}_t^T\pmb{V}\pmb{w}_t=\frac{c-2br+r^2a}{(b-ar)^2} \end{aligned} \right. E(Rt)=E(RRR)Twwwt=barcbrσt2=wwwtTVVVwwwt=(bar)2c2br+r2a

案例

考虑一个资产组合,其预期收益率矩阵为 E ( R ) = [ 0.2 , 0.5 ] T E(R)=[0.2, 0.5]^T E(R)=[0.2,0.5]T,协方差矩阵是 V = [ 1 0 0 1 ] \pmb{V}=\left[\begin{matrix}1 & 0\\ 0 & 1\end{matrix}\right] VVV=[1001],无风险利率 r = 0.1 r=0.1 r=0.1,预期收益率是 μ = 0.2 \mu=0.2 μ=0.2,求切点处资产组合的均值和方差.

解析

根据公式计算
E ( R t ) = E ( R ) T w t = c − b r b − a r σ t 2 = w t T V w t = c − 2 b r + r 2 a ( b − a r ) 2 \begin{aligned} &E(R_t)=E(\pmb{R})^T\pmb{w}_t=\frac{c-br}{b-ar}\\ &\sigma_t^2=\pmb{w}_t^T\pmb{V}\pmb{w}_t=\frac{c-2br+r^2a}{(b-ar)^2} \end{aligned} E(Rt)=E(RRR)Twwwt=barcbrσt2=wwwtTVVVwwwt=(bar)2c2br+r2a
预处理参数带入公式
{ a = 1 T V − 1 1 b = 1 T V − 1 E ( R ) c = E ( R ) T V − 1 E ( R ) \left\{ \begin{aligned} &a=\mathbf{1}^T\pmb{V}^{-1}\mathbf{1} \\ &b=\mathbf{1}^T\pmb{V}^{-1}E(\pmb{R})\\ &c=E(\pmb{R})^T\pmb{V}^{-1}E(\pmb{R}) \end{aligned} \right. a=1TVVV11b=1TVVV1E(RRR)c=E(RRR)TVVV1E(RRR)

代码

import numpy as np
from numpy import dot
from numpy.linalg import inv
def portfolio_cut(E, R, V, r, u):
    V=inv(V)
    a=dot(dot(E, V), E)
    b=dot(dot(E, V), R)
    c=dot(dot(R, V), R)
    ret=(c-b*r)/(b-a*r)
    var=(c-2*b*r+(r**2)*a)/(b-a*r)**2
    return (ret, var)
    
def main():
    E=np.ones(2)
    R=np.array([0.2, 0.5])
    V=np.eye(2)
    r=0.1
    u=0.2
    ans=portfolio_cut(E, R, V, r, u)
    print('portfolio return is {:.4f} variance is {:.4f}'.format(ans[0], ans[1]))
    
main()

预期收益率关系式

设有一个无风险资产和 n n n个风险资产,在切点处风险资产的收益率分别为 R 1 , R 2 , … , R n R_1, R_2, \dots, R_n R1,R2,,Rn权重分别为 w t 1 , w t 2 , … , w t n w_{t1}, w_{t2}, \dots, w_{tn} wt1,wt2,,wtn,则在切点处组合收益率为
R t = ∑ i = 1 n w t i R i R_t=\sum_{i=1}^nw_{ti}R_i Rt=i=1nwtiRi
w t \pmb{w}_t wwwt的表达式
w t = V − 1 ( E ( R ) − r 1 ) b − a r \pmb{w}_t=\frac{\pmb{V}^{-1}(E(\pmb{R})-r\mathbf{1})}{b-ar} wwwt=barVVV1(E(RRR)r1)
左乘 V \pmb{V} VVV得到
c o v ( R , R t ) = V w t = E ( R ) − r 1 b − a r cov(\pmb{R}, R_t)=\pmb{V}\pmb{w}_t=\frac{E(\pmb{R})-r\mathbf{1}}{b-ar} cov(RRR,Rt)=VVVwwwt=barE(RRR)r1
左乘 w t T \pmb{w}_t^T wwwtT得到
σ t 2 = w T V w = E ( R t ) − r b − a r \sigma_t^2=\pmb{w}^T\pmb{V}\pmb{w}=\frac{E(R_t)-r}{b-ar} σt2=wwwTVVVwww=barE(Rt)r
整理得到
E ( R ) − r 1 = c o v ( R , R t ) ( b − a r ) = c o v ( R , R t ) E ( R t ) − r σ t 2 = β t ( E ( R t ) − r ) E(\pmb{R})-r\mathbf{1}=cov(\pmb{R}, R_t)(b-ar)=cov(\pmb{R}, R_t)\frac{E(R_t)-r}{\sigma_t^2}=\beta_t(E(R_t)-r) E(RRR)r1=cov(RRR,Rt)(bar)=cov(RRR,Rt)σt2E(Rt)r=βt(E(Rt)r)
可以得到如下定理

定理:当市场上存在无风险资产时,任意资产的收益率 R i R_i Ri的超额收益率等比于切点资产组合的超额收益率,且等比于比例系数 β t i = c o v ( R i , R t ) σ t 2 \beta_{ti}=\frac{cov(R_i, R_t)}{\sigma_t^2} βti=σt2cov(Ri,Rt)

E ( R i ) = r + β t i ( E ( R t ) − r ) E(R_i)=r+\beta_{ti}(E(R_t)-r) E(Ri)=r+βti(E(Rt)r)

将无风险资产推广到零贝塔资产,可以得到如下定理

定理:假设市场上资产组合仅由风险资产组合,则可以任意选择最小方差资产组合 w u \pmb{w}_u wwwu与之零贝塔相关的资产组合,使得任意风险资产的收益率可以表示为
E ( R i ) = E ( R z ) + β u i [ E ( R u ) − E ( R z ) ] E(R_i)=E(R_z)+\beta_{ui}[E(R_u)-E(R_z)] E(Ri)=E(Rz)+βui[E(Ru)E(Rz)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值