【AP】Robust multi-period portfolio selection(3)

Pre Blog Link

Robust multi-period portfolio selection(2)

Robust conterparts of multi-period portfolio problems

本节主要分析在非对称不确定集合 F Ω \mathcal{F}_\Omega FΩ下,鲁棒投资组合模型 ( 2.14 ) (2.14) (2.14). 为此(To this end),我们假设风险资产 i i i r ~ i t , t = 1 , 2 , … , T \tilde{r}_i^t, t=1,2,\dots, T r~it,t=1,2,,T m m m个随机因子 ξ t ~ = ( ξ ~ 1 t , … , ξ ~ m t ) ′ ∈ R m \tilde{\pmb{\xi}^t}=(\tilde{\xi}_1^t, \dots, \tilde{\xi}_m^t)'\in\mathbb{R}^m ξξξt~=(ξ~1t,,ξ~mt)Rm驱动,收益率向量 r t ~ \tilde{\pmb{r}^t} rrrt~可以表示为这些因子的线性组合.
2.7

从方程组 ( 2.7 ) (2.7) (2.7)可以知道,由于 r 0 \pmb{r}^0 rrr0是已知,可以得到收益率向量表达式如下
R ~ t + 1 = μ t + 1 + A t + 1 ξ t ~ , t = 1 , … , T (4.1) \tilde{\pmb{R}}^{t+1}=\pmb{\mu}^{t+1}+\pmb{A}^{t+1}\tilde{\pmb{\xi}^t}, t=1,\dots, T\tag{4.1} RRR~t+1=μμμt+1+AAAt+1ξξξt~,t=1,,T(4.1)
其中 μ t + 1 \pmb{\mu}^{t+1} μμμt+1为常数, A t + 1 ∈ R n × m \pmb{A}^{t+1}\in\mathbb{R}^{n\times m} AAAt+1Rn×m是因子载荷矩阵,为了简化模型,设置 ξ ~ t \tilde{\pmb{\xi}}^t ξξξ~t为序列无关,对于每阶段 t t t满足标准条件 ( 3.6 ) (3.6) (3.6),且具有支撑集 S t ∈ [ − l t , u t ] \mathbb{S}^t\in[-\pmb{l}^t, \pmb{u}^t] St[lllt,uuut]. 可以得到随机向量的期望为
E [ R ~ t + 1 ] = μ t + 1 , t = 1 , … , T (4.2) \mathbb{E}[\tilde{\pmb{R}}^{t+1}]=\pmb{\mu}^{t+1}, t=1,\dots, T\tag{4.2} E[RRR~t+1]=μμμt+1,t=1,,T(4.2)
可以将非对称不确定集合 F Ω \mathcal{F}_\Omega FΩ扩展到多阶段的情况
F Ω t = { ξ t : ∃ u ‾ t , u ‾ t ∈ R + m , ξ t = u ‾ t − u ‾ t , ∥ ( P ) − 1 u ‾ + ( Q ) − 1 u ‾ ∥ 2 ≤ Ω t , ξ t ∈ [ − l t , u t ] } (4.3) \mathcal{F}_\Omega^t=\{\pmb{\xi}^t:\exist \underline{\pmb{u}}^t, \overline{\pmb{u}}^t\in\mathbb{R}_+^m, \pmb{\xi}^t=\overline{\pmb{u}}^t-\underline{\pmb{u}}^t, \lVert(\pmb{P})^{-1}\overline{\pmb{u}}+(\pmb{Q})^{-1}\underline{\pmb{u}}\rVert_2\leq\Omega^t, \pmb{\xi}^t\in[-\pmb{l}^t, \pmb{u}^t]\}\tag{4.3} FΩt={ξξξt:uuut,uuutR+m,ξξξt=uuutuuut,(PPP)1uuu+(QQQ)1uuu2Ωt,ξξξt[lllt,uuut]}(4.3)
其中, P t = d i a g ( p 1 t , … , p m t ) \pmb{P}^t=diag(p_1^t, \dots, p_m^t) PPPt=diag(p1t,,pmt) Q t = d i a g ( q 1 t , … , q m t ) \pmb{Q}^t=diag(q_1^t, \dots, q_m^t) QQQt=diag(q1t,,qmt),矩阵元素满足
{ p i t = p ( ξ ~ i t ) > 0 q i t = q ( ξ ~ i t ) > 0 \begin{cases} p_i^t=p(\tilde{\xi}_i^t)>0\\ q_i^t=q(\tilde{\xi}_i^t)>0 \end{cases} {pit=p(ξ~it)>0qit=q(ξ~it)>0
表示随机变量 ξ i t \xi_i^t ξitforwardbackward偏离值.

In the following, what we are interested in is the robust counterpart of ( 2.14 ) (2.14) (2.14) when the random factors ξ t ~ \tilde{\pmb{\xi}^t} ξξξt~ vary in the uncertainty set F Ω t \mathcal{F}_\Omega^t FΩt. To this end, we introduce some notation.


h 0 t ( y t , z t + 1 ) = w 0 t − w 0 t + 1 + ( 1 − θ R 0 t + 1 z s , t + 1 − 1 + θ R 0 t + 1 z b , t + 1 ) μ t + 1 t = 1 , … , T − 1 (4.4) h_0^t(\pmb{y}^t, \pmb{z}^{t+1})=w_0^t-w_0^{t+1}+\bigg(\frac{1-\theta}{R_0^{t+1}}\pmb{z}^{s, t+1}-\frac{1+\theta}{R_0^{t+1}}\pmb{z}^{b, t+1}\bigg)\pmb{\mu}^{t+1}\\ t=1, \dots, T-1\tag{4.4} h0t(yyyt,zzzt+1)=w0tw0t+1+(R0t+11θzzzs,t+1R0t+11+θzzzb,t+1)μμμt+1t=1,,T1(4.4)
以及
h j t ( y t , z t + 1 ) = e j ′ ( A t + 1 ) ′ ( 1 − θ R 0 t + 1 z s , t + 1 − 1 − θ R 0 t + 1 z b , t + 1 ) j = 1 , … , m t = 1 , … , T − 1 (4.5) h_j^t(\pmb{y}^t, \pmb{z}^{t+1})=\pmb{e}_j'(\pmb{A}^{t+1})'\bigg(\frac{1-\theta}{R_0^{t+1}}\pmb{z}^{s, t+1}-\frac{1-\theta}{R_0^{t+1}}\pmb{z}^{b, t+1}\bigg)\\ j=1,\dots, m \quad t=1,\dots, T-1\tag{4.5} hjt(yyyt,zzzt+1)=eeej(AAAt+1)(R0t+11θzzzs,t+1R0t+11θzzzb,t+1)j=1,,mt=1,,T1(4.5)
其中 y t = ( w 0 t ; w t ) ∈ R n + 1 , z t + 1 = ( z b , t + 1 , z s , t + 1 ) ∈ R 2 m \pmb{y}^t=(w_0^t; \pmb{w}^t)\in\mathbb{R}^{n+1}, \pmb{z}^{t+1}=(\pmb{z}^{b, t+1}, \pmb{z}^{s, t+1})\in\mathbb{R}^{2m} yyyt=(w0t;wwwt)Rn+1,zzzt+1=(zzzb,t+1,zzzs,t+1)R2m,并且 e j \pmb{e}_j eeej是一个 m m m维向量,其中位置 j j j的元素为1,其他的位置为0,根据 ( 4.4 ) (4.4) (4.4) ( 4.5 ) (4.5) (4.5)重写随机不等式约束 ( 2.13 ) (2.13) (2.13)
2.13

可以得到
w 0 t − w 0 t + 1 + 1 − θ R 0 t + 1 ( R ~ t + 1 ) ′ z s , t + 1 − 1 + θ R 0 t + 1 ( R ~ t + 1 ) ′ z b , t + 1 ≥ 0 (4.6) w_0^t-w_0^{t+1}+\frac{1-\theta}{R_0^{t+1}}(\tilde{\pmb{R}}^{t+1})'\pmb{z}^{s, t+1}-\frac{1+\theta}{R_0^{t+1}}(\tilde{\pmb{R}}^{t+1})'\pmb{z}^{b, t+1}\geq 0\tag{4.6} w0tw0t+1+R0t+11θ(RRR~t+1)zzzs,t+1R0t+11+θ(RRR~t+1)zzzb,t+10(4.6)
( 4.1 ) (4.1) (4.1)代入到随机约束 ( 4.6 ) (4.6) (4.6)中,由 ( 4.1 ) ∼ ( 4.5 ) (4.1)\sim (4.5) (4.1)(4.5)随机约束等效于如下关于 ( y t ; z t + 1 ) (\pmb{y}^t; \pmb{z}^{t+1}) (yyyt;zzzt+1) ( ξ ~ t ) (\tilde{\pmb{\xi}}^t) (ξξξ~t)的双线性方程(bilinear function)
G t ( y t , z t + 1 ; ξ t ~ ) = h 0 t ( y t , z t + 1 ) + ∑ j = 1 m ξ ~ j t h j t ( y t , z t + 1 ) ≥ 0 t = 1 , … , T − 1 (4.7) G^t(\pmb{y}^t, \pmb{z}^{t+1}; \tilde{\pmb{\xi}^t})=h_0^t(\pmb{y}^t, \pmb{z}^{t+1})+\sum_{j=1}^m\tilde{\xi}_j^th_j^t(\pmb{y}^t, \pmb{z}^{t+1})\geq 0\\ t=1, \dots, T-1\tag{4.7} Gt(yyyt,zzzt+1;ξξξt~)=h0t(yyyt,zzzt+1)+j=1mξ~jthjt(yyyt,zzzt+1)0t=1,,T1(4.7)
进一步
g ( y T , z T + 1 , ξ ~ t ) = w 0 T R 0 T + 1 + ( R ~ T + 1 ) ′ w T (4.8) g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\pmb{\xi}}^t)=w_0^TR_0^{T+1}+(\tilde{\pmb{R}}^{T+1})'\pmb{w}^T\tag{4.8} g(yyyT,zzzT+1,ξξξ~t)=w0TR0T+1+(RRR~T+1)wwwT(4.8)

h 0 T ( y T , z T + 1 ) = w 0 T R 0 T + 1 + ( μ T + 1 ) ′ w T (4.9) h_0^T(\pmb{y}^T, \pmb{z}^{T+1})=w_0^TR_0^{T+1}+(\pmb{\mu}^{T+1})'\pmb{w}^T\tag{4.9} h0T(yyyT,zzzT+1)=w0TR0T+1+(μμμT+1)wwwT(4.9)

h j T ( y T , z T + 1 ) = e j ′ ( A T + 1 ) ′ w T j = 1 , … , m (4.10) h_j^T(\pmb{y}^T, \pmb{z}^{T+1})=\pmb{e}_j'(\pmb{A}^{T+1})'\pmb{w}^T\\ j=1,\dots, m\tag{4.10} hjT(yyyT,zzzT+1)=eeej(AAAT+1)wwwTj=1,,m(4.10)
( 4.1 ) (4.1) (4.1)可以得到
g ( y T , z T + 1 , ξ ~ ) = w 0 T R 0 T + 1 + ( R ~ T + 1 ) ′ w T = 分离出非随机部分 ( w 0 T R 0 T + 1 + ( μ T + 1 ) ′ w T ) + ∑ i = 1 m ξ ~ j ( e j ′ ( A T + 1 ) ′ w T ) = 代入4.9和4.10 h 0 T ( y T , z T + 1 ) + ∑ i = 1 m ξ ~ i h j T ( y T , z T + 1 ) (4.11) \begin{aligned} g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\pmb{\xi}})&=w_0^TR_0^{T+1}+(\tilde{\pmb{R}}^{T+1})'\pmb{w}^T\\ &\xlongequal{\text{分离出非随机部分}}(w_0^TR_0^{T+1}+(\pmb{\mu}^{T+1})'\pmb{w}^T)+\sum_{i=1}^m\tilde{\xi}_j(\pmb{e}_j'(\pmb{A}^{T+1})'\pmb{w}^T)\\ &\xlongequal{\text{代入4.9和4.10}}h_0^T(\pmb{y}^T, \pmb{z}^{T+1})+\sum_{i=1}^m\tilde{\xi}_ih_j^T(\pmb{y}^T, \pmb{z}^{T+1})\tag{4.11} \end{aligned} g(yyyT,zzzT+1,ξξξ~)=w0TR0T+1+(RRR~T+1)wwwT分离出非随机部分 (w0TR0T+1+(μμμT+1)wwwT)+i=1mξ~j(eeej(AAAT+1)wwwT)代入4.94.10 h0T(yyyT,zzzT+1)+i=1mξ~ihjT(yyyT,zzzT+1)(4.11)
因此可以将原问题 ( 2.14 ) (2.14) (2.14)改写如下MLPM
min ⁡ ( y t , z t + 1 ) ∈ X ρ ( a , λ ; g ( y T , z T + 1 , ξ t ~ ) + ) = − E [ g ( y T , z T + 1 , ξ ~ t ) ] + λ E [ ( a − g ( y T , z T + 1 , ξ t ~ ) ) + ] s . t . { G t ( y t , z t + 1 ; ξ t ~ ) = h 0 t ( y t , z t + 1 ) + ∑ j = 1 m ξ j t ~ h j t ( y t , z t + 1 ) ≥ 0 t = 1 , … , T − 1 \begin{aligned} &\min_{(y^t, z^{t+1})\in\mathcal{X}} \rho(a, \lambda; g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\pmb{\xi}^t})_+)\\ &=-\mathbb{E}[g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\xi}^t)]+\lambda\mathbb{E}[(a-g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\pmb{\xi}^t}))_+]\\ &s.t.\begin{cases} G^t(\pmb{y}^t, \pmb{z}^{t+1}; \tilde{\pmb{\xi}^t})=h_0^t(\pmb{y}^t, \pmb{z}^{t+1})+\sum\limits_{j=1}^m\tilde{\xi_j^t}h_j^t(\pmb{y}^t, \pmb{z}^{t+1})\geq 0\\ t=1, \dots, T-1 \end{cases} \end{aligned} (yt,zt+1)Xminρ(a,λ;g(yyyT,zzzT+1,ξξξt~)+)=E[g(yyyT,zzzT+1,ξ~t)]+λE[(ag(yyyT,zzzT+1,ξξξt~))+]s.t.Gt(yyyt,zzzt+1;ξξξt~)=h0t(yyyt,zzzt+1)+j=1mξjt~hjt(yyyt,zzzt+1)0t=1,,T1
其中 y t = ( w 0 t ; w t ) ∈ R n + 1 , z t + 1 = ( z b , t + 1 ; z s , t + 1 ) ∈ R 2 n \pmb{y}^t=(w_0^t; \pmb{w}^t)\in\mathbb{R}^{n+1}, \pmb{z}^{t+1}=(\pmb{z}^{b, t+1}; \pmb{z}^{s, t+1})\in\mathbb{R}^{2n} yyyt=(w0t;wwwt)Rn+1,zzzt+1=(zzzb,t+1;zzzs,t+1)R2n,并且在确定性约束条件的可行集 X \mathcal{X} X
X = { ( y t , z t + 1 ) : R 0 1 w 0 1 + ∑ i = 1 m R i 1 w i 1 = 1 , i = 1 , … , n w i t + 1 = w i t + z i b , t + 1 − z i s , t + 1 w i t ≥ 0 z i b , t ≥ 0 z i s , t ≥ 0 } \mathcal{X}= \left\{ (\pmb{y}^t, \pmb{z}^{t+1}):\quad \begin{aligned} &R_0^1w_0^1+\sum_{i=1}^mR_i^1w_i^1=1, i=1,\dots, n\\ &w_i^{t+1}=w_i^t+z_i^{b, t+1}-z_i^{s, t+1}\\ &w_i^t\geq 0\\ &z_i^{b, t}\geq 0\\ &z_i^{s, t}\geq 0 \end{aligned} \right\} X=(yyyt,zzzt+1):R01w01+i=1mRi1wi1=1,i=1,,nwit+1=wit+zib,t+1zis,t+1wit0zib,t0zis,t0
定理4.1 模型 ( 2.14 ) (2.14) (2.14)(MLPM)的目标函数具有紧的上界(tight upper bound)
ρ = − E [ g ( y T , z T + 1 , ξ ~ T ) ] + λ E [ ( a − g ( y T , z T + 1 , ξ T ~ ) ) + ] ≤ − ( 1 + λ ) h 0 T ( y T , z T + 1 ) + λ a − λ ( γ − 1 ) β ^ + λ ( − β ^ ) + + λ γ ( ( h 0 T ( y T , z T + 1 ) − a ) + max ⁡ ξ T ∈ F Ω ∑ j = 1 m h j T ( y T , z T + 1 ) ξ j T ) (4.12) \begin{aligned} \rho&=-\mathbb{E}[g(\pmb{y}^T, \pmb{z}^{T+1}, \tilde{\pmb{\xi}}^T)]+\lambda\mathbb{E}[(a-g(\pmb{y}^T, \pmb{z}^{T+1},\tilde{\pmb{\xi}^T}))_+]\\ &\leq -(1+\lambda)h_0^T(\pmb{y}^T, \pmb{z}^{T+1})+\lambda a-\lambda(\gamma-1)\hat{\beta}+\lambda(-\hat{\beta})_+\\ &+\lambda\gamma\bigg((h_0^T(\pmb{y}^T, \pmb{z}^{T+1})-a)+\max_{\xi^T\in\mathcal{F}_\Omega}\sum_{j=1}^mh_j^T(\pmb{y}^T, \pmb{z}^{T+1})\xi_j^T\bigg)\tag{4.12} \end{aligned} ρ=E[g(yyyT,zzzT+1,ξξξ~T)]+λE[(ag(yyyT,zzzT+1,ξξξT~))+](1+λ)h0T(yyyT,zzzT+1)+λaλ(γ1)β^+λ(β^)++λγ((h0T(yyyT,zzzT+1)a)+ξTFΩmaxj=1mhjT(yyyT,zzzT+1)ξjT)(4.12)
其中方程参数定义如下
params

证明过程见论文的Online Appendix.

ψ ( a , λ ; g ( y T , z T + 1 , ξ T ) ) \psi(a, \lambda; g(\pmb{y}^T, \pmb{z}^{T+1}, \pmb{\xi}^T)) ψ(a,λ;g(yyyT,zzzT+1,ξξξT))
表示方程 ( 4.12 ) (4.12) (4.12)的右端,即 ρ \rho ρ的紧的上界(tight upper bound). 因此可以转换原问题 ( 2.14 ) (2.14) (2.14)的目标函数为 ψ \psi ψ. 从定理 4.1 4.1 4.1的证明过程中可以知道
max ⁡ ξ T ∈ F Ω ∑ j = 1 m h j T ( y T , z T + 1 ) ξ j T = min ⁡ d T { Ω ∥ d T ∥ : P − 1 d T ≥ h T , Q − 1 d h ≥ − h T } \max_{\xi^T\in\mathcal{F}_\Omega}\sum_{j=1}^mh_j^T(\pmb{y}^T, \pmb{z}^{T+1})\xi_j^T=\min_{d^T}\{\Omega\lVert \pmb{d}^T\rVert:\pmb{P}^{-1}\pmb{d}^T\geq \pmb{h}^T, \pmb{Q}^{-1}\pmb{d}^h\geq-\pmb{h}^T\} ξTFΩmaxj=1mhjT(yyyT,zzzT+1)ξjT=dTmin{ΩdddTPPP1dddThhhT,QQQ1dddhhhhT}

( x ) + = x + ( − x ) + (x)_+=x+(-x)_+ (x)+=x+(x)+
代入 ψ \psi ψ表达式可以得到
psi

Next we return to the stochastic inequality constraints of problem (MLPM). With the uncertainty set F Ω \mathcal{F}_\Omega FΩ and 3.10 3.10 3.10,the robust counterpart of the stochastic inequality constraint is the determinate inequality.

G t ( y t , z t + 1 , ξ t ) ≥ 0 , ξ t ∈ F Ω t (4.13) G^t(\pmb{y}^t, \pmb{z}^{t+1}, \pmb{\xi}^t)\geq 0, \pmb{\xi}^t\in\mathcal{F}^t_{\Omega}\tag{4.13} Gt(yyyt,zzzt+1,ξξξt)0,ξξξtFΩt(4.13)

In summary, we have the robust counterpart of original problem, denoted by RLPM:

robust

定理4.2 对于任意 λ ≥ 1 , ε > 0 \lambda\geq 1, \varepsilon>0 λ1,ε>0, ε t = ε / ( T − 1 ) , Ω = Ω t = − 2 ln ⁡ ( ε t ) , γ = exp ⁡ ( − Ω 2 / 2 ) \varepsilon_t=\varepsilon/(T-1),\Omega=\Omega_t=\sqrt{-2\ln(\varepsilon_t)},\gamma=\exp(-\Omega^2/2) εt=ε/(T1)Ω=Ωt=2ln(εt) γ=exp(Ω2/2),对于RLPM的任意可行解 ( y t , z t + 1 ) (\pmb{y}^t, \pmb{z}^{t+1}) (yyyt,zzzt+1),原问题的随机约束满足
T4.2

作者对定理 ( 4.2 ) (4.2) (4.2)的评论如下(主要分析了其内在的保守性)

The impact of Theorem 4.2 is double. On the one hand, one can always take a desired confidence level ε \varepsilon ε such as ε = 0.05 \varepsilon=0.05 ε=0.05,such that the probability guarantee (4.16) holds. However, on the other hand, this will lead to a very conservative individual constraint, in other words, if ε = 0.05 \varepsilon=0.05 ε=0.05,then we must take ε t ≤ ε / ( T − 1 ) = 0.0005 ; P { G t ( y t , z t + 1 ; ξ t ) ≥ 0 } ≥ 0.9995 \varepsilon_t\leq \varepsilon/(T-1)=0.0005; \mathbb{P}\{G^t(\pmb{y}^t, \pmb{z}^{t+1};\pmb{\xi}^t)\geq 0\}\geq 0.9995 εtε/(T1)=0.0005;P{Gt(yyyt,zzzt+1;ξξξt)0}0.9995 for T = 101 T=101 T=101. Indeed, this is too conservative and is unpractical.

The relationship between RLPM and CVaR

定义关于投资组合 x ∈ X ⊂ R n + 1 \pmb{x}\in\mathcal{X}\subset \mathbb{R}^{n+1} xxxXRn+1和随机向量 ξ ~ ∈ R m \tilde{\pmb{\xi}}\in\mathbb{R}^m ξξξ~Rm的损失函数 f ( x , ξ ~ ) f(\pmb{x}, \tilde{\pmb{\xi}}) f(xxx,ξξξ~).

VaR is defined as the minimal level β \beta β, such that the probability that the portfolio loss f ( x , ξ ~ ) f(\pmb{x}, \tilde{\pmb{\xi}}) f(xxx,ξξξ~) exceeds β \beta β is below α \alpha α, where α ∈ ( 0 , 1 ) \alpha\in(0, 1) α(0,1) is the probability level specified by the user (typically, α = 1 % \alpha=1\% α=1% or 5 % 5\% 5%).

V a R 1 − α ( f ( x , ξ ~ ) ) = min ⁡ { β ∣ P ( f ( x , ξ ~ ) ) ≤ α } VaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}}))=\min\{\beta\mid \mathbb{P}(f(\pmb{x}, \pmb{\tilde{\xi}}))\leq \alpha\} VaR1α(f(xxx,ξξξ~))=min{βP(f(xxx,ξ~ξ~ξ~))α}
CVaR度量了在 f ( x , ξ ~ ) ≥ V a R 1 − α f(\pmb{x}, \tilde{\pmb{\xi}})\geq VaR_{1-\alpha} f(xxx,ξξξ~)VaR1α下的条件期望损失,数学上的定义可以参考Rockafellar, R & Uryasev (2000)1给出.
C V a R 1 − α ( f ( x , ξ ~ ) ) = E [ f ( x , ξ ~ ) ∣ f ( x , ξ ~ ) ≥ V a R 1 − α ] CVaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}}))=\mathbb{E}[f(\pmb{x}, \tilde{\pmb{\xi}})\mid f(\pmb{x}, \tilde{\pmb{\xi}})\geq VaR_{1-\alpha}] CVaR1α(f(xxx,ξξξ~))=E[f(xxx,ξξξ~)f(xxx,ξξξ~)VaR1α]
对于给定的 α \alpha α,如果设置LPM中的目标a的值为 a = 1 − V a R 1 − α a=1-VaR_{1-\alpha} a=1VaR1α,并且 g ( x , ξ ~ ) = 1 − f ( x , ξ ~ ) g(\pmb{x}, \tilde{\pmb{\xi}})=1-f(\pmb{x}, \tilde{\pmb{\xi}}) g(xxx,ξξξ~)=1f(xxx,ξξξ~),那么可以得到
L P M ( a ; g ( x , ξ ~ ) ) = E [ a − g ( x , ξ ~ ) ] + = E [ a − g ( x , ξ ~ ) ∣ a − g ( x , ξ ~ ) ≥ 0 ] = E [ f ( x , ξ ~ ) − V a R 1 − α ( f ( x , ξ ~ ) ) ∣ f ( x , ξ ~ ) ≥ V a R 1 − α ] \begin{aligned} LPM(a; g(x, \tilde{\xi}))&=\mathbb{E}[a-g(\pmb{x}, \tilde{\pmb{\xi}})]_+=\mathbb{E}[a-g(\pmb{x}, \tilde{\pmb{\xi}})\mid a-g(\pmb{x}, \tilde{\pmb{\xi}})\geq 0]\\ &=\mathbb{E}[f(\pmb{x}, \tilde{\pmb{\xi}})-VaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}}))\mid f(\pmb{x}, \tilde{\pmb{\xi}})\geq VaR_{1-\alpha}] \end{aligned} LPM(a;g(x,ξ~))=E[ag(xxx,ξξξ~)]+=E[ag(xxx,ξξξ~)ag(xxx,ξξξ~)0]=E[f(xxx,ξξξ~)VaR1α(f(xxx,ξξξ~))f(xxx,ξξξ~)VaR1α]
如果 α \alpha α的取值使得 V a R 1 − α VaR_{1-\alpha} VaR1α为非负值,那么可以得到
L P M ( a ; g ( x , ξ ~ ) ) ≤ C V a R 1 − α ( f ( x , ξ ~ ) ) LPM(a; g(\pmb{x}, \tilde{\pmb{\xi}}))\leq CVaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}})) LPM(a;g(xxx,ξξξ~))CVaR1α(f(xxx,ξξξ~))
α \alpha α ξ ~ \tilde{\xi} ξ~的分布为给定时,即 V a R 1 − α ( f ( x , ξ ~ ) ) VaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}})) VaR1α(f(xxx,ξξξ~))为确定值,可以得到
L P M ( a ; g ( x , ξ ~ ) ) = C V a R 1 − α ( f ( x , ξ ~ ) ) − V a R 1 − α ( f ( x , ξ ~ ) ) LPM(a; g(\pmb{x}, \tilde{\pmb{\xi}}))=CVaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}}))-VaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}})) LPM(a;g(xxx,ξξξ~))=CVaR1α(f(xxx,ξξξ~))VaR1α(f(xxx,ξξξ~))

In this case, the minimization of CVaR is equivalent to the minimization of the sum of LPM and VaR. Thus, the differences between mean-CVaR and mean-LPM are clear.
First, in the minimization of CVaR problem, we can understand that the target V a R 1 − α ( f ( x , ξ ~ ) ) VaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}})) VaR1α(f(xxx,ξξξ~)) is in fact endogenous. But in LPM, the target a a a is exogenous.
Second, the advantage of exogenous a a a can avoid the effect of uncertainty set in robust portfolio choice which can reduce a chance constraint in multi-period case.

根据CVaR的一致性,可以得到
min ⁡ x C V a R 1 − α ( f ( x , ξ ~ ) ) = min ⁡ x , γ 0 { γ 0 ∣ C V a R 1 − α f ( x , ξ ~ ) + γ 0 ≤ 0 } (4.17) \min_x CVaR_{1-\alpha}(f(\pmb{x}, \tilde{\pmb{\xi}}))=\min_{x, \gamma_0}\bigg\{ \gamma_0\mid CVaR_{1-\alpha}f(\pmb{x}, \tilde{\pmb{\xi}})+\gamma_0\leq 0\bigg\}\tag{4.17} xminCVaR1α(f(xxx,ξξξ~))=x,γ0min{γ0CVaR1αf(xxx,ξξξ~)+γ00}(4.17)

The right hand side of problem ( 4.17 ) (4.17) (4.17) includes a CVaR constraint which is still difficult to be expressed explicitly when the distribution information ξ ~ \tilde{\pmb{\xi}} ξξξ~ is only given by ( 3.7 ) (3.7) (3.7)

random
可以将CVaR约束看做机会约束的近似
C V a R 1 − ε ( f ( x , ξ ~ ) + γ 0 ) ≤ 0 → P { f ( x , ξ ~ ) + γ 0 ≥ 0 } ≥ 1 − ε (4.18) CVaR_{1-\varepsilon}(f(\pmb{x}, \tilde{\pmb{\xi}})+\gamma_0)\leq 0\to\mathbb{P}\bigg\{ f(\pmb{x}, \tilde{\pmb{\xi}})+\gamma_0\geq 0\bigg\}\geq 1-\varepsilon\tag{4.18} CVaR1ε(f(xxx,ξξξ~)+γ0)0P{f(xxx,ξξξ~)+γ00}1ε(4.18)
但是这并不是充分条件.

As stated in Natarajan et al. (2008) to solve the minimization of CVaR under uncertainty set F Ω \mathcal{F}_\Omega FΩ, it needs to add a new constraint (the right hand side of (4.18)) , which will lead to a more conservative solution from ( 4.2 ) (4.2) (4.2) than LPM.
Third, when the exogenous target a is taken not too extreme value, it can help LPM reduce the variance of portfolio. For example, if a is close to the mean return of portfolio, then LPM in fact controls the down-side semi-variance which clearly is important to limit the variance. (如果目标值a与投资组合的收益均值接近,那么LPM实际上控制了下行方差(半方差)的风险).

可以由VaR给出外生变量a的参考值. 令投资组合的收益率 r ~ p ( ξ ~ ) \tilde{r}_p(\tilde{\pmb{\xi}}) r~p(ξξξ~)服从正态分布. 令 a = 1 − V a R a=1-VaR a=1VaR2,可以得到
a = 1 − Z 1 − α σ r ~ p (4.19) a=1-\mathcal{Z}_{1-\alpha}\sigma_{\tilde{r}_p}\tag{4.19} a=1Z1ασr~p(4.19)


  1. Optimization of conditional value-at-risk ↩︎

  2. normal distribution下可以计算VaR值为 V a R = Z 1 − α σ r ~ p + μ r ~ p VaR=\mathcal{Z}_{1-\alpha}\sigma_{\tilde{r}_p}+\mu_{\tilde{r}_p} VaR=Z1ασr~p+μr~p,本文的数值实验中,使用Hull (2015)的结果,他在计算过程中忽略了期望收益 μ r ~ p \mu_{\tilde{r}_p} μr~p,因为和波动率相比,期望收益的值太小了. ↩︎

自动增益控制(Automatic Gain Control,简称AGC)和多样式训练(Multi-Style Training)对于稳健小体积的有着重要意义。 首先,自动增益控制(AGC)是一种技术,可以自动调整信号的增益,以确保信号在传输过程中保持适当的强度。在语音识别和音频处理中,AGC可以有效地处理各种输入信号的音量差异,使其更适合于后续的处理过程。通过调整增益,AGC可以提高信号质量、减少噪音干扰,从而使得小体积系统更加稳健。 其次,多样式训练(Multi-Style Training)是一种训练方法,通过使用大量不同风格和语调的语音样本来增强语音识别系统的鲁棒性。传统的语音识别系统通常只在标准风格的语音上进行训练,导致在其他风格的语音输入时识别率下降。而采用多样式训练方法,系统可以学习到更广泛的语音样式,使得在各种语音输入情况下都能取得较好的识别效果。对于小体积的系统来说,多样式训练可以提高系统的鲁棒性,减少输入多样性带来的挑战。 综上所述,自动增益控制和多样式训练对于稳健小体积系统的重要性体现在它们能够提高信号质量、减少噪音干扰,并且增加系统对各种不同语音风格的适应能力。这些技术的应用可以使得小体积系统在不同环境和语音输入情况下都能取得较好的效果,提高用户体验和系统的实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值