【AP】On robust mean variance portfolios(2)

Pre Link

On robust mean variance portfolios(1)

Robust MV model

Robust MV model as follows, which we refer to the problem as RMVP2:
max ⁡ x min ⁡ r ∈ U r r T x + ( W 0 − e T x ) R s . t . x T Σ x ≤ t 2 \max_x\min_{r\in U_r}r^Tx+(W_0-e^Tx)R\\ s.t.\quad x^T\Sigma x\leq t^2 xmaxrUrminrTx+(W0eTx)Rs.t.xTΣxt2
for an appropriately selected positive number t t t, the model can be reformulated into
max ⁡ x r ^ T x + ( W 0 − e T x ) R − γ ∥ Σ 1 / 2 x ∥ 2 s . t . x T Σ x ≤ t 2 \max_x \hat{r}^Tx+(W_0-e^Tx)R-\gamma\lVert\Sigma^{1/2}x\rVert_2\\ s.t.\quad x^T\Sigma x\leq t^2 xmaxr^Tx+(W0eTx)RγΣ1/2x2s.t.xTΣxt2
or equivalently based on the equation r ^ T x − e T x R = μ ^ T x \hat{r}^Tx-e^TxR=\hat{\mu}^Tx r^TxeTxR=μ^Tx
max ⁡ x μ ^ T x + W 0 R − γ ∥ Σ 1 / 2 x ∥ 2 s . t . x T Σ x ≤ t 2 \max_x\hat{\mu}^Tx+W_0R-\gamma\lVert\Sigma^{1/2}x\rVert_2\\ s.t.\quad x^T\Sigma x\leq t^2 xmaxμ^Tx+W0RγΣ1/2x2s.t.xTΣxt2
Proposition 2: If H ≥ γ H\geq \gamma Hγ then RMVP2 admits the unique optimal solution
x ∗ = t H Σ − 1 μ ^ x^*=\frac{t}{H}\Sigma^{-1}\hat{\mu} x=HtΣ1μ^
If H < γ H<\gamma H<γ then it is optimal for an RMVP2 investor to keep all initial wealth in the riskless asset.
Proof: the Lagrange function using a non-negative multiplier λ \lambda λ:
L ( x , λ ) = μ ^ T x + W 0 R − γ ∥ Σ 1 / 2 x ∥ 2 + λ ( t 2 − x T Σ x ) L(x, \lambda)=\hat{\mu}^Tx+W_0R-\gamma\lVert\Sigma^{1/2}x\rVert_2+\lambda(t^2-x^T\Sigma x) L(x,λ)=μ^Tx+W0RγΣ1/2x2+λ(t2xTΣx)
the optimal solution x ∗ x^* x can be obtained according to the first-order condition and Slater condition
x ∗ = ( σ 2 σ λ + γ ) Σ − 1 μ ^ x^*=(\frac{\sigma}{2\sigma\lambda+\gamma})\Sigma^{-1}\hat{\mu} x=(2σλ+γσ)Σ1μ^
The definition of σ \sigma σ reveal that
σ 2 = σ 2 ( 2 σ λ + γ ) 2 H 2 \sigma^2=\frac{\sigma^2}{(2\sigma\lambda+\gamma)^2}H^2 σ2=(2σλ+γ)2σ2H2
Assuming the constraint to be active and observing that σ = t \sigma=t σ=t, we have
λ = H − γ 2 t \lambda=\frac{H-\gamma}{2t} λ=2tHγ
which is non-negative provided that H ≥ γ H\geq \gamma Hγ. If H < γ H<\gamma H<γ then the only feasible choice for λ \lambda λ is zero along with a dual objective function value equal to W 0 R W_0R W0R which is attained in the primal by a riskless portfolio, i.e. x ∗ = 0 x^*=0 x=0.
The robust MV portfolio is identical to the MV portfolio obtained as a solution to the problem
max ⁡ x μ ^ T x + W 0 R s . t . x T Σ x ≤ t 2 \max_x\hat{\mu}^Tx+W_0R\\ s.t.\quad x^T\Sigma x\leq t^2 xmaxμ^Tx+W0Rs.t.xTΣxt2
That is, the investor maximizing robust expected return under a variance constraint makes a MV portfolio choice when his/her confidence in the estimation of the mean is high, i.e. γ \gamma γ is smaller than H H H.(这种情况下对均值的置信程度很高).

Corollary 1:
Let H ≥ γ H\geq \gamma Hγ.Then

  1. choosing a maximum variance t = T − W 0 R H − γ t=\frac{T-W_0R}{H-\gamma} t=HγTW0R, the RMVP2 investor holds an optimal portfolio identical to the RMVP1 investor with a target wealth equal to T T T.
  2. choosing a minimum target wealth equal to T = W 0 R + t ( H − γ ) T=W_0R+t(H-\gamma) T=W0R+t(Hγ) the RMVP1 investor holds an optimal portfolio identical to the RMVP2 investor with a variance cap equal to t 2 t^2 t2.

Consider the following problem
max ⁡ x min ⁡ r ∈ U r r T x + ( W 0 − e T x ) R − ρ 2 x T Σ x \max_x\min_{r\in U_r}r^Tx+(W_0-e^Tx)R-\frac{\rho}{2}x^T\Sigma x xmaxrUrminrTx+(W0eTx)R2ρxTΣx
where ρ \rho ρ is a positive scalar. Expanding the inner m i n min min problem from the point of worst-case, we have
max ⁡ x r ^ T x + ( W 0 − e T x ) R − γ ∥ Σ 1 / 2 x ∥ 2 \max_x \hat{r}^Tx+(W_0-e^Tx)R-\gamma\lVert\Sigma^{1/2}x\rVert_2 xmaxr^Tx+(W0eTx)RγΣ1/2x2
which refer to as RMVP3.

Proposition 3: If γ ρ < H \gamma\rho<H γρ<H then RMVP3 admits the unique optimal solution
x ∗ = ( H − γ ρ ρ H ) Σ − 1 μ ^ x^*=(\frac{H-\gamma\rho}{\rho H})\Sigma^{-1}\hat{\mu} x=(ρHHγρ)Σ1μ^
If γ ρ > H \gamma\rho>H γρ>H then it is optimal for RMVP3 investor to keep all initial wealth in the riskless asset.
Proof: The function is strictly concave.(RMVP3问题是非凸优化), the first-order necessary conditions yield the candidate solution:
x = ( σ γ + σ ρ ) Σ − 1 μ ^ x=(\frac{\sigma}{\gamma+\sigma\rho})\Sigma^{-1}\hat{\mu} x=(γ+σρσ)Σ1μ^
Developing the right-hand side, we obtain a quadratic equation
ρ 2 σ 2 + 2 γ ρ σ + γ 2 − H 2 = 0 \rho^2\sigma^2+2\gamma\rho\sigma+\gamma^2-H^2=0 ρ2σ2+2γρσ+γ2H2=0
with the positive root
σ + = H − γ ρ ρ 2 \sigma_+=\frac{H-\gamma\rho}{\rho^2} σ+=ρ2Hγρ
provided that γ ρ < H \gamma\rho<H γρ<H.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值