spark RDD依赖类型

sparkRDD依赖

RDD的最重要的特性之一就是血缘关系,血缘关系描述了一个RDD是如何从父RDD计算得来的。其中Dependency的rdd方法返回一个RDD,及所依赖的RDD.

abstract class Dependency[T] extends Serializable {
  def rdd: RDD[T]
}
Dependency分为两种, narrow和shuffle
NarrowDependency

先看看比较简单的narrow
定义, parent RDD中的每个partition最多被child RDD中的一个partition使用, 即不需要shuffle
更直白点, 就是Narrow只有map, partition本身范围不会改变, 一个parititon经过transform还是一个partition, 虽然内容发生了变化, 所以可以在local完成
而wide就是, partition需要打乱从新划分, 存在shuffle的过程, partition的数目和范围都发生了变化

唯一的接口getParents, 即给定任一个partition-id, 得到所有依赖的parent partitions的id的seq

@DeveloperApi
abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
  /**
   * Get the parent partitions for a child partition.
   * @param partitionId a partition of the child RDD
   * @return the partitions of the parent RDD that the child partition depends upon
   */
  def getParents(partitionId: Int): Seq[Int]

  override def rdd: RDD[T] = _rdd
}
NarrowDependency又分为两种,

OneToOneDependency
最简单的依赖关系, 即parent和child里面的partitions是一一对应的, 典型的操作就是map, filter…

其实partitionId就是partition在RDD中的序号, 所以如果是一一对应, 那么parent和child中的partition的序号应该是一样的

RangeDependency

虽然仍然是一一对应, 但是是parent RDD中的某个区间的partitions对应到child RDD中的某个区间的partitions
典型的操作是union, 多个parent RDD合并到一个child RDD, 故每个parent RDD都对应到child RDD中的一个区间
需要注意的是, 这里的union不会把多个partition合并成一个partition, 而是的简单的把多个RDD中的partitions放到一个RDD里面, partition不会发生变化

由于是range, 所以直接记录起点和length就可以了, 没有必要加入每个中间rdd, 所以RangeDependency优化了空间效率

/**
  * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
  * @param rdd the parent RDD
  * @param inStart the start of the range in the parent RDD, parent RDD中区间的起始点
  * @param outStart the start of the range in the child RDD, child RDD中区间的起始点 
  * @param length the length of the range
  */
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
  extends NarrowDependency[T](rdd) {

  override def getParents(partitionId: Int) = {
    if (partitionId >= outStart && partitionId < outStart + length) { //判断partitionId的合理性,必须在child RDD的合理partition范围内
      List(partitionId - outStart + inStart) //算出parent RDD中对应的partition id
    } else {
      Nil
    }
  }
}
WideDependency

WideDependency, 也称为ShuffleDependency
首先需要基于PairRDD, 因为一般需要依据key进行shuffle, 所以数据结构往往是kv
即RDD中的数据是kv pair, [_ <: Product2[K, V]],

trait Product2[+T1, +T2] extends Product  // Product2 is a cartesian product of 2 components

Product2是trait, 这里实现了Product2可以用于表示kv pair? 不是很理解

其次, 由于需要shuffle, 所以当然需要给出partitioner, 如何完成shuffle

然后, shuffle不象map可以在local进行, 往往需要网络传输或存储, 所以需要serializerClass

最后, 每个shuffle需要分配一个全局的id, context.newShuffleId()的实现就是把全局id累加


/**
 * :: DeveloperApi ::
 * Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle,
 * the RDD is transient since we don't need it on the executor side.
 *
 * @param _rdd the parent RDD
 * @param partitioner partitioner used to partition the shuffle output
 * @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If not set
 *                   explicitly then the default serializer, as specified by `spark.serializer`
 *                   config option, will be used.
 * @param keyOrdering key ordering for RDD's shuffles
 * @param aggregator map/reduce-side aggregator for RDD's shuffle
 * @param mapSideCombine whether to perform partial aggregation (also known as map-side combine)
 */
@DeveloperApi
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
    @transient private val _rdd: RDD[_ <: Product2[K, V]],
    val partitioner: Partitioner,
    val serializer: Serializer = SparkEnv.get.serializer,
    val keyOrdering: Option[Ordering[K]] = None,
    val aggregator: Option[Aggregator[K, V, C]] = None,  //聚合器。
    val mapSideCombine: Boolean = false)
  extends Dependency[Product2[K, V]] {

  override def rdd: RDD[Product2[K, V]] = _rdd.asInstanceOf[RDD[Product2[K, V]]]

  private[spark] val keyClassName: String = reflect.classTag[K].runtimeClass.getName
  private[spark] val valueClassName: String = reflect.classTag[V].runtimeClass.getName
  // Note: It's possible that the combiner class tag is null, if the combineByKey
  // methods in PairRDDFunctions are used instead of combineByKeyWithClassTag.
  private[spark] val combinerClassName: Option[String] =
    Option(reflect.classTag[C]).map(_.runtimeClass.getName)

  val shuffleId: Int = _rdd.context.newShuffleId()

  val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
    shuffleId, _rdd.partitions.length, this)

  _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
}



Spark RDD(弹性分布式数据集)的依赖机制是Spark实现容错性和高效计算的核心机制之一。 在Spark中,每个RDD都表示一个可分区、只读的数据集。RDD之间的依赖关系描述了RDD之间的转换操作,并指示了RDD如何通过转换操作从父RDD生成新的子RDDRDD依赖关系可以分为两种类型:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency)。 1. 窄依赖:当一个父RDD的每个分区只被一个子RDD的一个分区所使用时,我们称之为窄依赖。在这种情况下,Spark可以高效地进行转换操作,而无需重新计算所有的数据。例如,map、filter等转换操作都属于窄依赖。窄依赖允许Spark在计算中进行更多的优化,如任务划分、数据本地性等。 2. 宽依赖:当一个父RDD的分区被多个子RDD的分区所使用时,我们称之为宽依赖。在这种情况下,Spark需要通过将数据进行洗牌(Shuffle)操作来重新组织数据,以满足子RDD的需求。例如,groupByKey、reduceByKey等转换操作都属于宽依赖。洗牌操作需要涉及数据的网络传输和排序,因此会引入额外的开销。 Spark使用DAG(有向无环图)来表示RDD之间的依赖关系。每个RDD都包含其对应的转换操作和所依赖的父RDD。当执行一个Action操作时,Spark会根据RDD之间的依赖关系动态构建执行计划,并将其转化为一系列的任务来执行。 通过依赖机制,Spark可以实现容错性,即当某个分区的数据丢失或计算失败时,可以通过依赖关系重新计算该分区的数据。同时,Spark还可以根据依赖关系进行任务划分和数据本地化等优化,以提高计算效率和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值