正则L1、L2
详细的解释:L1正则化引起稀疏解的多种解释
1、对“L1稀疏解、L2平滑解”的个人理解
L1正则
- 二维函数=|x-y|=0,平面图是个以原点为中心的正方形,四个角都正好在x或y周上。
- 通过分析知道,L1下坐标轴上的点更有可能成为最优解,但坐标轴上的点肯定x=0或y=0,即存在
某些维度下value=0的情况,从而导致矩阵变得稀疏。
L2正则
- 二维函数=(x-y)^2=0,是个以原点为中心的圆。
- 通过分析知道,L2下待拟合曲线与圆的切点是最优解,而圆有那么多切点,分布在坐标轴上的才4个点,其他点也都可以作为切点,而且这些点坐标(x,y)都在(0,1)范围内,不会取0和1,从而导致矩阵里的更多的值是
接近0,而不是等于0,也就是所谓的平滑解现象。
本文探讨了L1和L2正则化的概念,通过二维函数示例解释了L1正则化倾向于产生稀疏解,即某些特征值为0,使模型简化;而L2正则化则产生平滑解,更多值接近0而非0,使特征权重分布更均匀。
426

被折叠的 条评论
为什么被折叠?



