模型训练的正则L1、L2

本文探讨了L1和L2正则化的概念,通过二维函数示例解释了L1正则化倾向于产生稀疏解,即某些特征值为0,使模型简化;而L2正则化则产生平滑解,更多值接近0而非0,使特征权重分布更均匀。
摘要由CSDN通过智能技术生成

详细的解释:L1正则化引起稀疏解的多种解释

1、对“L1稀疏解、L2平滑解”的个人理解

L1正则
  • 二维函数=|x-y|=0,平面图是个以原点为中心的正方形,四个角都正好在x或y周上。
  • 通过分析知道,L1下坐标轴上的点更有可能成为最优解,但坐标轴上的点肯定x=0或y=0,即存在某些维度下value=0的情况,从而导致矩阵变得稀疏
L2正则
  • 二维函数=(x-y)^2=0,是个以原点为中心的圆。
  • 通过分析知道,L2下待拟合曲线与圆的切点是最优解,而圆有那么多切点,分布在坐标轴上的才4个点,其他点也都可以作为切点,而且这些点坐标(x,y)都在(0,1)范围内,不会取0和1,从而导致矩阵里的更多的值是接近0,而不是等于0,也就是所谓的平滑解现象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值