从1万到1亿需要多少个涨停板?(python)

190 篇文章 ¥49.90 ¥99.00
本文通过Python编程探讨了从1万元本金如何通过连续涨停板达到1亿元,以及从1亿元如何在跌停板后回到1万元。计算结果显示,从1万到1亿需要97个涨停板,而从1亿到1万则需要88个跌停板。同时,文中指出,面对投资风险,理解复利原理至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 如果本金只有1万元,需要多少个涨停板才可以到达一亿元呢?

亦或者,如果有一亿元本金,需要多少个跌停板才可以到达一万元。

注:涨停板(+10%)跌停板(-10%)

用到的复利计算公式:

F=P*(1+i)^n

F:复利终值  

P:本金

i:利率    

N:利率获取时间的整数倍

目录

一、从1万到1亿

1、程序代码

 2、程序输出

二、从1亿到1万

1、程序代码

2、程序输出

三、简单总结


一、从1万到1亿

### 实现股票涨停板计算或监控 对于股票涨停板的计算与监控,可以基于给定的时间间隔定期抓取最新的市场数据并分析这些数据以判断是否有股票达到了涨停的状态。下面是一个简化版的例子,该例子利用了掘金所提供的API接口来获取市场数据,并实现了基本的逻辑用于检测是否存在达到涨停状态的股票。 #### 定义所需函数 为了完成此任务,定义几个辅助性的功能模块是非常有帮助的: - `get_market_data()`:负责调用`current()`方法从市场上收集最新信息。 - `calculate_limit_up(price)`:接收开盘价作为参数输入,返回理论上对应的涨停价格。 - `check_for_limit_ups(data, limit_prices)`:遍历所有股票的数据列表,对比每只股票当前的价格与其理论上的涨停价位,当发现匹配项时触发警报机制。 ```python import time from jqdatasdk import auth, get_price # 假设使用的是聚宽平台 def authenticate(): """登录认证""" auth('username', 'password') # 用户名密码替换为自己的账户凭证 def calculate_limit_up(opening_price): """ 计算涨停价格 参数: opening_price (float): 开盘价 返回值: float: 股票涨停后的预期价格 """ increase_rate = 0.1 # A股通常情况下最大涨幅比例为10% return round(opening_price * (1 + increase_rate), 2) def check_for_limit_ups(stock_data, limit_prices): """ 检查是否出现涨停情况 参数: stock_data (dict): 各支股票的信息字典 limit_prices (dict): 预期涨停价格表 """ alerts = [] for code, info in stock_data.items(): current_price = info['close'] if abs(current_price - limit_prices[code]) < 1e-6 and not info.get('alerted'): message = f"{code} has hit the upper price limit!" print(message) play_sound_alert() alerts.append(code) # 更新已报警记录防止重复通知 for alert_code in alerts: stock_data[alert_code]['alerted'] = True def fetch_and_process(): """获取市场价格并与预估涨停线比较""" all_stocks_info = {} # 存储各支股票的相关信息 expected_upper_limits = {} market_snapshot = get_current_market_state() # 获取即时市场快照 for ticker, details in market_snapshot.iterrows(): open_price = details.open latest_close = details.close all_stocks_info[ticker] = { "open": open_price, "close": latest_close, "alerted": False } expected_upper_limits[ticker] = calculate_limit_up(open_price) check_for_limit_ups(all_stocks_info, expected_upper_limits) def main_loop(interval=60): while True: try: authenticate() fetch_and_process() except Exception as e: logging.error(f"Error occurred during processing: {str(e)}") finally: time.sleep(interval) # 设置循环周期等待下一次执行 ``` 上述代码片段展示了如何构建一个简单的框架来进行股票涨停监测[^1]。需要注意的是实际应用中还需要考虑更多细节比如异常处理、性能优化以及更复杂的业务逻辑等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roc-xb

真诚赞赏,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值