python获取环境变量 import osenv = os.environ['PATH'].split(';')#划分为listenv = [i for i in env if i !=""]#去除空值env.sort(key = lambda x: x[0])#按照盘符排序#....输出
nothing 1.关于分类和聚类kmeans属于聚类算法中的一种。分类和聚类是不同的概念。虽然两者的目的都是对数据进行分类,但是却有一定的区别。分类是按照某种标准给对象贴标签,再根据标签来区分归类;聚类是事先没有给出标签,刚开始并不知道如何对数据分类,完全是算法自己来判断各条数据之间的相似性,相似的就放在一起。在聚类的结论出来之前,不能知道每一类有什么特点,最后一定要根据聚类的结果通过人的经验来分析才能知道
【MOOC】Python机器学习应用-北京理工大学 - 【第二周】有监督学习 本周课程导学监督学习的目标利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射关系应用到未知数据上,达到分类或回归的目的。分类:当输出是离散的,学习任务为分类任务。回归:当输出是连续的,学习任务为回归任务。分类学习• 输入:一组有标签的训练数据(也称观察和评估),标签表明了这些数据(观察)的所署类别。• 输出:分类模型根据这些训练数据,训练自己的模型参数,学习出一个适合这组数据的分类
【MOOC】Python机器学习应用-北京理工大学 - 【第一周】无监督学习 本周课程导学1.无监督学习简介利用无标签的数据学习数据的分布或数据与数据之间的关系被称作无监督学习。• 有监督学习和无监督学习的最大区别在于数据是否有标签• 无监督学习最常应用的场景是聚类(clustering)和降维(DimensionReduction)聚类和分类都是无监督学习的典型任务,任务之间存在关联,比如某些高纬数据的分类可以通过降维处理更好的获得,另外学界研究也表明代表性的分类算法如k-
Sicily 1500. Prime Gap | 运用数论结论:10^9以内,两个相邻素数距离不超过400 题目: • 题意:给出一个正整数k,找到与之相邻的两个素数,并求出两个素数之差。如果不存在两个相邻的素数则输出0。限制: 1<=k<=1299709• 分析:有一个结论,素数的分布相对密集,在10^9以内,两个相邻素数距离不超过400 ,所以可以直接向前和向后枚举素数代码:// Problem#: 1500// Submission#: 5124813// The source code is
Sicily 1119. Factstone Benchmark | 使用log函数缩小数值范围 题目: • 题意:1960年发行了4位计算机,从此以后每过10年,计算机的位数变成两倍。输入某一个年份,求出在这个年份的最大的整数n使得n!能被一个字表示。• 限制:年份1960<=n<=2160,且n%10 == 0• 解法: 由于位长最多为2^22,能够表示的数范围很大,所以我们考虑使用log来缩小数值范围如果n!能够被位长为 bit_len 的字表示,那么应该有 n ! < 2^bitL
Sicily 1259. Sum of Consecutive Primes | 题目: • 题意: 给出一个正整数,求出它有多少种方法可以表示成连续的素数的和。例如53 = 5 + 7 + 11 + 13 + 17 = 53,共有两种方法。 • 限制:数字大小2<=n<=10000• 解法: 第一步,显然先把1~10000的所有素数找出来 第二步,就通过枚举连续素数的起点,来看是否有一段以它为开头的连续素数和为输入的数• 第一步可以用一种素数筛法,有个结论是1~n范围
Sicily 1020. Big Integer | 大整数取模运算 题目: •题意:输入n个整数bi(1 <= i <= n),以及一个大整 数x,输出一个n元组(x mod b1,x mod b2,…,x mod bn) • 约束: n <= 100, 1 < bi <= 1000 (1 <= i <= n) 大整数x的位数 m <= 400并且非负思路: • mod 操作(对应C++中的%操作符)的性质: • (a + b) % n == (a %
sicily 1029. Rabbit | 高精度加法+递推(类斐波那契推导) 题目:1029. Rabbit 题意: • 开始有一对成年兔子 • 每对成年兔子每个月产生一对小兔子 • 每只小兔子经过m个月变成成年兔子 • 问经过d个月后有多少兔子 • 约束: 1 <= m <= 10, 1 <= d <= 100解法:递推 • 这是一道计数问题,对于这类题目,一般是分 情况讨论。 • 比如说F[n]表示第n个月时兔子的数量 • 那么F[
Sicily 1206. Stacking Cylinders | 使用STL的complex库实现简单几何 题目: 1206. Stacking Cylinders Total: 2614 Accepted: 1102 Rating: 2.4/5.0(14 votes)Time Limit: 1sec Memory Limit:32MB Description Problem Cylinders (e.g. oil drums) (of radius 1 foot) a
python爬虫——爬取用js实现翻页的网站 ——————————————-背景介绍——————————————— 首先,这次想爬取的网站地址为:http://www.zhuhai.gov.cn/hd/zxts_44606/tsfk/查看网站的源代码后,发现页面数据没有在源代码中,猜测应是js生成的。检查元素后,刷新Network,可找到表格数据所在的URL:https://www.zh12345.gov.cn/external/zf/get
【MOOC】Python机器学习应用-北京理工大学 - 学期课程导学 1.机器学习简介1.1.机器学习的目的机器学习是实现人工智能的手段,其主要研究内容是如何利用数据或经验进行学习,改善具体算法的性能• 多领域交叉,涉及概率论、统计学,算法复杂度理论等多门学科• 广泛应用于网络搜索、垃圾邮件过滤、推荐系统、广告投放、信用评价、欺诈检测、股票交易和医疗诊断等应用1.2.机器学习的分类机器学习一般分为下面几种类别• 监督学习 (Supervised Learning)•
【MOOC】数字信号处理-电子科技大学-第八&九周 - 离散时间信号的变换域分析--z变换 定义和理解Z变换可理解为DTFT的推广定义: 由于z是复数,则,则其定义可写为:可以看到,当r=1时即是DTFT的定义式。使得Z变换收敛的z的取值区间称:region of convergence (ROC,收敛域),即是求使得成立的r的区间(由r即可求z)。常用z变换对: 需要注意:z变换一样不代表原序列也一样,比如: 需要同时指定z变换和ROC才可唯一确定一个序列。因此,我们讨论一个序列的
matlab在DSP中的应用(七)---快速傅里叶变换(FFT) 一、实验目的 (1)加深对快速傅里叶变换(FFT)基本理论的理解。(2)了解使用快速傅里叶变换(FFT)计算有限长序列和无限长序列信号频谱的方法。(3)掌握用MATLAB语言进行快速傅里叶变换时常用的子函数。二、实验涉及的MATLAB子函数 1.fft功能:一维快速傅里叶变换(FFT)。调用格式1:y=fft(x);利用FFT算法计算矢量x的离散傅里叶变换,当x为矩阵时,y为矩阵x每一
jieba的简单使用 本文涉及jieba.cut、jieba.addword、jieba.load_userdict这3个函数运行环境:IPythonimport jieba;for w in jieba.cut("我爱Python"): print(w)输出:Building prefix dict from the default dictionary ...Loading model from cach