- 博客(74)
- 资源 (1)
- 收藏
- 关注
转载 [BetterExplained]为什么你应该(从现在开始就)写博客 By 刘未鹏
(一)为什么你应该(从现在开始就)写博客用一句话来说就是,写一个博客有很多好处,却没有任何明显的坏处。(阿灵顿的情况属于例外,而非常态,就像不能拿抽烟活到一百岁的英国老太太的个例来反驳抽烟对健康的极大损伤一样)让我说得更明确一点:用博客的形式来记录下你有价值的思考,会带来很多好处,却没有任何明显的坏处。Note:碎碎念不算思考、心情琐记不算思考、唠唠叨叨也不算思考、没话找话也不算思
2016-07-11 07:53:48 670
原创 python获取环境变量
import osenv = os.environ['PATH'].split(';')#划分为listenv = [i for i in env if i !=""]#去除空值env.sort(key = lambda x: x[0])#按照盘符排序#....输出
2017-09-18 14:51:04 2702
原创 nothing
1.关于分类和聚类kmeans属于聚类算法中的一种。分类和聚类是不同的概念。虽然两者的目的都是对数据进行分类,但是却有一定的区别。分类是按照某种标准给对象贴标签,再根据标签来区分归类;聚类是事先没有给出标签,刚开始并不知道如何对数据分类,完全是算法自己来判断各条数据之间的相似性,相似的就放在一起。在聚类的结论出来之前,不能知道每一类有什么特点,最后一定要根据聚类的结果通过人的经验来分析才能知道
2017-07-30 11:29:37 656
原创 【MOOC】Python机器学习应用-北京理工大学 - 【第二周】有监督学习
本周课程导学监督学习的目标利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射关系应用到未知数据上,达到分类或回归的目的。分类:当输出是离散的,学习任务为分类任务。回归:当输出是连续的,学习任务为回归任务。分类学习• 输入:一组有标签的训练数据(也称观察和评估),标签表明了这些数据(观察)的所署类别。• 输出:分类模型根据这些训练数据,训练自己的模型参数,学习出一个适合这组数据的分类
2017-07-25 20:34:49 8566 4
原创 【MOOC】Python机器学习应用-北京理工大学 - 【第一周】无监督学习
本周课程导学1.无监督学习简介利用无标签的数据学习数据的分布或数据与数据之间的关系被称作无监督学习。• 有监督学习和无监督学习的最大区别在于数据是否有标签• 无监督学习最常应用的场景是聚类(clustering)和降维(DimensionReduction)聚类和分类都是无监督学习的典型任务,任务之间存在关联,比如某些高纬数据的分类可以通过降维处理更好的获得,另外学界研究也表明代表性的分类算法如k-
2017-07-24 21:16:16 10177 5
原创 Sicily 1500. Prime Gap | 运用数论结论:10^9以内,两个相邻素数距离不超过400
题目: • 题意:给出一个正整数k,找到与之相邻的两个素数,并求出两个素数之差。如果不存在两个相邻的素数则输出0。限制: 1<=k<=1299709• 分析:有一个结论,素数的分布相对密集,在10^9以内,两个相邻素数距离不超过400 ,所以可以直接向前和向后枚举素数代码:// Problem#: 1500// Submission#: 5124813// The source code is
2017-06-29 16:36:08 972
原创 Sicily 1119. Factstone Benchmark | 使用log函数缩小数值范围
题目: • 题意:1960年发行了4位计算机,从此以后每过10年,计算机的位数变成两倍。输入某一个年份,求出在这个年份的最大的整数n使得n!能被一个字表示。• 限制:年份1960<=n<=2160,且n%10 == 0• 解法: 由于位长最多为2^22,能够表示的数范围很大,所以我们考虑使用log来缩小数值范围如果n!能够被位长为 bit_len 的字表示,那么应该有 n ! < 2^bitL
2017-06-29 16:26:03 659
原创 Sicily 1259. Sum of Consecutive Primes |
题目: • 题意: 给出一个正整数,求出它有多少种方法可以表示成连续的素数的和。例如53 = 5 + 7 + 11 + 13 + 17 = 53,共有两种方法。 • 限制:数字大小2<=n<=10000• 解法: 第一步,显然先把1~10000的所有素数找出来 第二步,就通过枚举连续素数的起点,来看是否有一段以它为开头的连续素数和为输入的数• 第一步可以用一种素数筛法,有个结论是1~n范围
2017-06-29 13:58:31 532
原创 Sicily 1020. Big Integer | 大整数取模运算
题目: •题意:输入n个整数bi(1 <= i <= n),以及一个大整 数x,输出一个n元组(x mod b1,x mod b2,…,x mod bn) • 约束: n <= 100, 1 < bi <= 1000 (1 <= i <= n) 大整数x的位数 m <= 400并且非负思路: • mod 操作(对应C++中的%操作符)的性质: • (a + b) % n == (a %
2017-06-29 13:41:11 1354
原创 sicily 1029. Rabbit | 高精度加法+递推(类斐波那契推导)
题目:1029. Rabbit 题意: • 开始有一对成年兔子 • 每对成年兔子每个月产生一对小兔子 • 每只小兔子经过m个月变成成年兔子 • 问经过d个月后有多少兔子 • 约束: 1 <= m <= 10, 1 <= d <= 100解法:递推 • 这是一道计数问题,对于这类题目,一般是分 情况讨论。 • 比如说F[n]表示第n个月时兔子的数量 • 那么F[
2017-06-29 09:52:05 648
原创 Sicily 1206. Stacking Cylinders | 使用STL的complex库实现简单几何
题目: 1206. Stacking Cylinders Total: 2614 Accepted: 1102 Rating: 2.4/5.0(14 votes)Time Limit: 1sec Memory Limit:32MB Description Problem Cylinders (e.g. oil drums) (of radius 1 foot) a
2017-06-28 21:28:45 426
原创 python爬虫——爬取用js实现翻页的网站
——————————————-背景介绍——————————————— 首先,这次想爬取的网站地址为:http://www.zhuhai.gov.cn/hd/zxts_44606/tsfk/查看网站的源代码后,发现页面数据没有在源代码中,猜测应是js生成的。检查元素后,刷新Network,可找到表格数据所在的URL:https://www.zh12345.gov.cn/external/zf/get
2017-06-06 16:31:28 32715 6
原创 【MOOC】Python机器学习应用-北京理工大学 - 学期课程导学
1.机器学习简介1.1.机器学习的目的机器学习是实现人工智能的手段,其主要研究内容是如何利用数据或经验进行学习,改善具体算法的性能• 多领域交叉,涉及概率论、统计学,算法复杂度理论等多门学科• 广泛应用于网络搜索、垃圾邮件过滤、推荐系统、广告投放、信用评价、欺诈检测、股票交易和医疗诊断等应用1.2.机器学习的分类机器学习一般分为下面几种类别• 监督学习 (Supervised Learning)•
2017-06-06 16:04:32 6202 3
原创 【MOOC】数字信号处理-电子科技大学-第八&九周 - 离散时间信号的变换域分析--z变换
定义和理解Z变换可理解为DTFT的推广定义: 由于z是复数,则,则其定义可写为:可以看到,当r=1时即是DTFT的定义式。使得Z变换收敛的z的取值区间称:region of convergence (ROC,收敛域),即是求使得成立的r的区间(由r即可求z)。常用z变换对: 需要注意:z变换一样不代表原序列也一样,比如: 需要同时指定z变换和ROC才可唯一确定一个序列。因此,我们讨论一个序列的
2017-05-14 00:53:53 2368
原创 matlab在DSP中的应用(七)---快速傅里叶变换(FFT)
一、实验目的 (1)加深对快速傅里叶变换(FFT)基本理论的理解。(2)了解使用快速傅里叶变换(FFT)计算有限长序列和无限长序列信号频谱的方法。(3)掌握用MATLAB语言进行快速傅里叶变换时常用的子函数。二、实验涉及的MATLAB子函数 1.fft功能:一维快速傅里叶变换(FFT)。调用格式1:y=fft(x);利用FFT算法计算矢量x的离散傅里叶变换,当x为矩阵时,y为矩阵x每一
2017-05-10 10:26:02 5657 1
原创 jieba的简单使用
本文涉及jieba.cut、jieba.addword、jieba.load_userdict这3个函数运行环境:IPythonimport jieba;for w in jieba.cut("我爱Python"): print(w)输出:Building prefix dict from the default dictionary ...Loading model from cach
2017-05-06 13:07:57 13733 1
原创 python获得Python脚本所在目录的位置的 【坑】
坑:用os.getcwd()不一定能获得脚本所在的目录一般地,如果是要获得脚本运行的当前目录所在位置,那么可以使用os模块的os.getcwd()函数。但是如果我们想找到脚本所在目录的位置,这种方法就会出问题,举例:若在C:\test目录下执行python getpath\getpath.py,那么os.getcwd()只会输出“C:\test”。这便是获得脚本运行的当前目录所在位置的含义。正确做法
2017-05-06 12:20:05 5186
原创 【MOOC】数字信号处理-电子科技大学-第六&七周 - 离散傅里叶变换-DFT定义及性质
1 DFT的定义假设序列x[n]有N个点,其 N点 DFT的定义如下: 值得注意的是:DFT得到的频域的序列也是离散的。将上面两式写成矩阵形式,则有:对于正变换:对于反变换:在推导关系式时,经常需要用到的关系式:2 DFT与DTFT的关系通过采样从DTFT得到DFT已知DTFT的正变换为:对比DFT的变换式:可知:N点DFT 就是 对DTFT以采样间隔为 2*pi/N 得到的具有N个离散点的信号。
2017-05-05 20:51:57 3667
原创 【MOOC】数字信号处理-电子科技大学-第四&五周 - 离散时间系统的时域和变换域分析
4.1 一些概念FIR Finite Impulse Response (FIR): h[n] is finite length IIR Infinite Impulse Response (IIR): h[n] is infinite lengthLTI系统完全由h[n]决定系统具有因果性,则有: 系统具有稳定性,则有: 4.2 离散时间系统的变换域分析首先介绍两个特征函数 和
2017-05-05 14:02:23 1614
原创 【MOOC】数字信号处理-电子科技大学-第三周 - 离散时间信号的变换域分析-DTFT
3.1 信号变换域分析的重要性简单来说,就是换个角度看问题。在时域上做不到或者很难做到的事情,换在频域上可能就简单许多了。比如:1.时域上的微分方程 通过 s变换 就可转换为 代数方程2.时域上的差分方程 通过 z变换 就可转换为 代数方程3.2 从CTFT到DTFT这一部分的主题是:DTFT可以从CTFT推导出来对于CTFT: 其变换对为: 对于信号xa(t),假设通过冲击串采样信号p(t
2017-05-05 00:21:59 2027
原创 matlab在DSP中的应用(六)---离散傅里叶变换的性质
一、实验目的 (1)加深对离散傅里叶变换(DFT)基本性质的理解。(2)了解有限长序列傅里叶变换(DFT)性质的研究方法。(3)掌握用MATLAB语言进行离散傅里叶变换性质分析时程序编写的方法。二、实验原理1.线性性质 如果两个有限长序列分别为x1(n)和x2(n),长度分别为N1和N2,且y(n)=ax1(n)+bx2(n) (a、b均为常数)则该y(n)的N点DFT为Y(k)=DFT[y
2017-05-03 10:22:43 11755 2
原创 【MOOC】数字信号处理-电子科技大学-第二周 - 连续时间信号的数字化处理
2.1连续时间信号的采样Concepts of sampling采样(sampling):指把时间域或空间域的连续量转化成离散量的过程。采样流程实际的连续时间信号的数字化处理过程: 将上述过程的一些部分理想化后,可得 理想的连续时间信号的数字化处理过程: 如何采样简单来说,采样就是通过一定的“节拍”,有规律地取连续信号的一些离散的点的过程。下图所示的是 用Ts的采样间隔来对连续时间信号x(t
2017-05-02 23:30:22 5457
原创 matlab在DSP中的应用(五)---离散傅里叶变换DFT
一、实验目的(1)加深对离散傅里叶变换(DFT)基本概念的理解(2)了解有限长序列傅里叶变换(DFT)与离散时间傅里叶变换(DTFT)的联系(3)掌握用MATLAB语言进行离散傅里叶变换和逆变换的方法二、实验原理1.有限长序列的傅里叶变换(DFT)和逆变换(IDFT)在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为:从离散傅里叶变换定义式可以看出,有限长
2017-05-02 10:13:04 16477 1
原创 【MOOC】Python数据分析与展示-北京理工大学-【第三周】数据分析之概要
概要:提取数据的基本特征单元7:pandas库入门更多参考:http://pandas.pydata.org/Pandas是Python第三方库,提供高性能易用数据类型和分析工具,Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用。常用引用方法:import pandas as pd7.1对pandas库的理解与numpy的区别 该库基于numpy提供了两个新的数据类型:
2017-05-01 11:52:19 3839 2
原创 【MOOC】Python数据分析与展示-北京理工大学-【第二周】数据分析之展示
单元4:matplotlib库入门更多可参考:http://matplotlib.org/gallery.html写在前面:matplotlib库非常复杂,我们没必要花时间去学习所有函数,对于该库,应该采用:根据我们已有的数据,查询文档或搜索,来即时选择可实现目的的函数,以实践指导理论学习。Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发(该模块的用法和matlab有很大的
2017-04-30 23:44:36 3275 4
原创 【MOOC】Python数据分析与展示-北京理工大学-【第一周】数据分析之表示
单元一:NumPy库入门1.1 数据的维度维度:一组数据的组织形式 一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织,对应列表、数组和集合等概念 如:3.1413, 3.1398, 3.1404, 3.1401, 3.1349, 3.1376。其中,关于列表和数组的区别是: 二维数据 二维数据由多个一维数据构成,是一维数据的组合形式,表格是典型的二维数据,其中,表头是二维
2017-04-30 10:39:17 3799
原创 【MOOC】Python数据分析与展示-北京理工大学-【第〇周】数据分析之前奏
课程内容导学主题思想与一组数据相关的那些事儿:如何理解一组数据表达的含义 有损地提取数据特征 内容组织全课程包括: • 8个内容单元,共12个单元 • 全课程总长4周,每周3个单元 • 每周包含一个实战型实例编程工具• 使用Anaconda IDE集成开发工具 • 需要理解和掌握如下工具的使用: • conda • Spyder • IPython课程实例• 使用Anaconda
2017-04-29 12:05:16 1835
原创 matlab在DSP中的应用(四)---离散系统的冲激响应和阶跃响应
一、实验目的(1)加深对离散线性移不变(LSI)系统基本理论的理解,明确差分方程与系统函数之间的关系。 (2)初步了解用MATLAB语言进行离散时间系统研究的基本方法。(3)掌握求解离散时间系统冲激响应和阶跃响应程序的编写方法,了解常用子函数。二、实验涉及的MATLAB子函数1.impz功能:求解数字系统的冲激响应。调用格式:[h,t]=impz(b,a);求解数字系统的冲激响应h,取样点
2017-04-17 21:10:19 47899 3
原创 matlab在DSP中的应用(四)---时域抽样与信号的重建
一、实验目的(1)掌握用MATLAB语言进行离散时间傅里叶变换和逆变换的方法。(2)了解用MATLAB语言进行时域抽样与信号重建的方法。(3)进一步加深对时域信号抽样与恢复的基本原理的理解。(4)观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。二、实验原理1.DTFT离散时间傅里叶变换(DTFT)是指信号在时域上为离散的,而在频域上则是连续的。如果离散时间非周期信号为x(n),
2017-04-05 12:33:43 14833 4
原创 matlab在DSP中的应用(三)---离散序列的基本运算
一、实验目的(1)进一步了解离散时间序列时域的基本运算。(2)通过实验进一步理解卷积定理,了解卷积的过程。(3)了解MATLAB语言进行离散序列运算的常用函数,掌握离散序列运算程序的编写方法。二、实验涉及的MATLAB子函数1.find 功能:寻找非零元素的索引号。调用格式:find((n>=min(n1))&(n<=max(n1)));在符合关系运算条件的范围内寻找非零元素的索引号。2.flip
2017-04-04 18:57:16 19395 3
原创 matlab在DSP中的应用(二)---时域离散信号的产生
一、实验原理1.时域离散信号的概念在时间轴的离散点上取值的信号,称为离散时间信号。通常,离散时间信号用x(n)表示,其幅度可以在某一范围内连续取值。由于信号处理所使用的设备和装置主要是计算机或专用的信号处理芯片,均以有限的位数来表示信号的幅度,因此,信号的幅度也必须“量化”,即取离散值。我们把时间和幅度上均取离散值的信号称为时域离散信号或数字信号。在MATLAB语言中,时域的离散信号可以通过编写程序
2017-04-04 14:21:24 8449 2
原创 matlab在DSP中的应用(一)---基本函数
DSP为数字信息处理之意一.基本函数1.plot功能: 按线性比例关系,在x和y两个方向上绘制二维图形。调用格式:plot(x, y);绘制以x为横轴、 y为纵轴的线性图形。plot(x1, y1, x2, y2, …);在同一坐标系上绘制多组x元素对y元素的线性图形。实例: 代码:x=0:pi/50:2*pi;y=sin(x);plot(x,y)输出: 2.stem功能: 绘制二维脉冲杆图
2017-04-04 12:02:12 9096
原创 python爬虫实战 | 批量爬取开放服务器的文件
今天在查有关spss modeler的参考资料时,发现了这个网站: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/14.2/zh_CN/里面包含了许多有关spss modeler的文件,于是想用爬虫把它们都爬取下来。 文件不多,但是想到以后可能会遇到文件比较多的情况,到时候再根据这个程序拓展一下便可以
2017-04-01 23:18:26 5251 2
原创 python 语法糖【不断更新】
1.得到a和b两个数的最大值solution: c = [b,a][a>b] 测试:>>> a=1>>> b=2>>> c=[b,a][a>b]>>> c22.假设现在给定了一个list:a = [[1, 2], [3, 4, 5], [6, 7], [8], [9]]问如何将其转化成:[1, 2, 3, 4, 5, 6, 7, 8, 9]其实就是将所有数据都拿出来组成一个1*n的list
2017-03-26 14:12:25 2955
原创 python 验证码识别
Talk is cheap, show you the Code!import numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom PIL import Image#打开图像im=np.array(Image.open('yzm.png'))#得到图像3个维度h,w,san=im.
2017-03-26 11:24:39 751
原创 【MOOC】数学建模 - 厦门大学-第1周
第1周 引言、数学建模与数学思想第1讲 引言-何谓数学建模1、讨论定量研究与定性研究的区别。(1)给出可能的优缺点; (2)在什么情况下,应用定量研究的方法?什么情况下应用定性研究的方法?什么情况下两者同时使用好? (3)障碍人们无法使用定量研究方法分析问题的客观原因可能是什么? (4)向人文社科的教授请教,他们的研究领域是否可以应用定量研究的方法?如果应用了,是如何应用的?如果没有,原因是什
2017-03-25 18:48:13 1615
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人