开源项目RAGFlow Docker部署安装教程

121 篇文章 ¥49.90 ¥99.00

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow
可以为各种规模的企业及个人提供一套精简的 RAG
工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。
开源地址:https://github.com/infiniflow/ragflow

一、拉取项目源码

git clone https://github.com/infiniflow/ragflow.git

二、安装部署步骤

根据作者提供的文档进行部署即可,首先要先确保你已经安装好的docker和docker-compose,然后进入到ragflow目录中执行以下命令,一条命令即可完成自动化部署。

docker compose 
<think>好的,用户正在寻找RAGFlow部署教程。我需要先确定RAGFlow是什么,可能是一个开源项目或者工具。根据用户提供的引用链接,看起来可能和GitHub上的awesome-LLM-resourses相关,但具体信息有限。 首先,我应该检查用户提到的引用链接,看看是否有关于RAGFlow部署信息。用户给出的引用[1]是Github的点赞页面,可能没有直接教程,但或许该仓库中有相关资源。不过可能用户提供的引用并不直接相关,需要进一步确认。 接下来,考虑到RAGFlow可能是一个基于RAG(Retrieval-Augmented Generation)技术的工具,常见于自然语言处理领域。部署这类工具通常需要依赖Docker、Kubernetes等容器化技术,或者直接通过源码安装。因此,我需要给出通用的部署步骤,比如通过Docker部署,或者克隆仓库后安装依赖。 然后,我需要确保回答的结构清晰,分步骤说明。可能包括系统要求、安装依赖项、获取源码、配置环境、启动服务等步骤。同时,要提醒用户注意常见问题,如端口冲突、依赖版本问题等。 另外,用户可能需要进一步的配置和使用示例,所以生成相关问题时,可以包括如何配置参数、集成模型、处理数据等。需要确保回答真实可靠,如果有不确定的地方,建议用户参考官方文档或社区支持。 最后,检查是否符合系统级指令:使用中文,正确应用行内公式格式(虽然这里可能用不上),生成相关问题,引用标记正确。确保没有使用Markdown格式,段落分隔自然,代码块用三个反引号包裹,并正确标注引用。</think>关于RAGFlow部署教程,以下是分步骤说明: ### 一、基础环境准备 1. 确保系统满足以下要求: - Linux/Windows/macOS(推荐Linux服务器部署) - Docker 20.10+ 和 Docker Compose v2.23+[^1] - 至少8GB内存(处理中文需16GB以上) ### 二、快速部署步骤 ```bash # 拉取官方镜像 docker pull infiniflow/ragflow:v1.0 # 创建数据存储目录 mkdir -p /data/ragflow/files mkdir -p /data/ragflow/db # 启动服务(GPU版需添加--gpus参数) docker run -d --name ragflow \ -p 9380:9380 \ -v /data/ragflow/files:/app/files \ -v /data/ragflow/db:/app/db \ infiniflow/ragflow:v1.0 ``` ### 三、验证部署 访问 `http://localhost:9380` 应看到Web界面,通过API测试连接: ```python import requests response = requests.get("http://localhost:9380/api/health") print(response.status_code) # 正常返回200 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roc-xb

真诚赞赏,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值