首先我们来看下初始化
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
没什么好说的,当传入一个list的时候也能生成一个LinkedList这样的链表。
Node的构成
private static class Node<E> {
E item;
//下一个节点
Node<E> next;
//上一个节点
Node<E> prev;
//构造函数
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
连接
在许多连接函数中,我们从最简单的尾部连接讨论起,连接比如说
1->2->3->4->5->6
我要加个7,
那我先把6这个节点存储起来’
再新建个节点7,7的前置节点得是6,无后直接点
当7要做尾部的时候,那么设置的last也一定要改成7那个节点咯,
再将存储的这个6节点的next设成7,这就关联起来了。
再看看头部节点的连接,
当我们要在头部新增个节点的时候,
我们先将1这个节点存储起来,
然后初始化一个比如说8这个节点吧,这个节点的next节点得是1
我们再把8这个节点更新到first上面去,
再用存好的1节点的prev指向到8这个节点。这就完成了头部插入的操作。
尾部连接
/**
* Links e as last element.
*/
void linkLast(E e) {
//暂存该节点为l
final Node<E> l = last;
//新增个节点,前节点为l,元素为e,没有右节点(因为直接插入后面)
final Node<E> newNode = new Node<>(l, e, null);
//新节点赋给最后节点
last = newNode;
if (l == null)
//链表为空(无最后节点)新增节点赋给首节点
first = newNode;
else
//暂存的last节点指向新节点
l.next = newNode;
size++;
modCount++;
}
头部连接
/**
* Links e as first element.
*/
private void linkFirst(E e) {
//暂存该链表第一个节点为f
final Node<E> f = first;
//新增节点newNode,并设置f为右节点
final Node<E> newNode = new Node<>(null, e, f);
//newNode赋给first
first = newNode;
if (f == null)
last = newNode;
else
//设置暂存f的前置节点为newNode
f.prev = newNode;
size++;
modCount++;
}
尾部删除
删除就传入某个节点,然后先将这个节点暂存,再将节点的前置或后置赋值给last|first要该进行更新,再将该节点的next或prev设置为空进行释放,这时删除的节点单向的解开,再用prev或next那个节点进行解开,完成删除
尾部删除
1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <->7
我想解开7
首先我暂存一个7为l
接着删除7之后7的prev那个节点会变成last,我们再将6赋值给last节点,并且定义为prev
7的prev关系还在,那我我们就可以设置成null进行释放
1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 ->7
光是这样还不够,6的next是7这个关系也还在,prev.next设置成null进行释放
1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 7
7节点与链表脱离关系。
/**
* Unlinks non-null last node l.
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
//存储当前节点元素
final E element = l.item;
//prev游标转向被删除节点的前一位
final Node<E> prev = l.prev;
//释放
l.item = null;
//释放
l.prev = null; // help GC
//orev作为last节点
last = prev;
if (prev == null)
first = null;
else
//prev下节点释放
prev.next = null;
size--;
modCount++;
return element;
}
解开头部节点,和尾部节点思路方面差不多
1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <->7
我们想解开1
我们首先保存1这个节点为L,
把first节点更新到2上
1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <->7
first
再用一个node指向2这个节点
把1的next指向2这个关系释放掉,
再把2的prev指向1这个关系释放掉。
/**
* Unlinks non-null first node f.
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
连接与删除
当接触完头部连接,尾部连接,尾部删除,头部删除之后,我们可以探讨更复杂的操作,指定idx进行连接,指定idx删除。
首先我们来看下linkBefore这个代码
/**
* Inserts element e before non-null Node succ.
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
//保存继承节点的前置节点 pred-succ
final Node<E> pred = succ.prev;
//新增一个节点的前置节点为继承节点的前置节点,后置节点为继承节点 pred<-n->succ
//也就是说新增节点与前后两个节点建立关系
final Node<E> newNode = new Node<>(pred, e, succ);
//继承节点的前置节点与新增节点建立关系,此时变成了 pred<-n<->succ
succ.prev = newNode;
if (pred == null)
first = newNode;
else
//我们先前保存的pred后节点与新增节点建立关系,此时变成了 pred<->n<->succ
//到这我们就完成了连接
pred.next = newNode;
size++;
modCount++;
}
/**
* Inserts the specified element at the specified position in this list.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
//假如size==index,就调用linkLast函数
linkLast(element);
else
//调用刚刚分析的linkBefore函数
linkBefore(element, node(index));
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
//在这个简单的返回node值的时候,我们看到了比较细节的处理
//比如index<size的0.5倍的时候,这个时候会选择从首节点开始寻找,反之就会从尾节点遍历
//可以缩短寻找第idx个元素的时间。
//这种方法相当值得我们借鉴,简单的二分查找法。
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
看完了增加,我们再看看删除。
remove函数主体上就是调用了unlink。
/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
//保存当前元素 当前:1<->2<->3
final E element = x.item;
//下一个节点 当前:1<->2<->3
final Node<E> next = x.next;
//上一个节点 当前:1<->2<->3
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
//1->3相连
prev.next = next;
//切断与上一个节点的联系
x.prev = null;
}
if (next == null) {
last = prev;
} else {
//3->1相连
next.prev = prev;
//切断与下一个节点的联系
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
像其他的api呢,我们大致可以很简单的去阅读了,总结下
LinkedList也称双向链表,字面含义就是结点有双向的,一个是prev,一个是next,
增加的时候,初始化就伸出两个触角一样的东西,左右都连接上,继承节点(succssor Node)的prev节点还是
新增这个节点的前置节点,我们把这个节点去设置后置节点,successor节点做这个新建节点的前置节点。