NLP自然语言处理
文章平均质量分 66
年少无为呀!
这个作者很懒,什么都没留下…
展开
-
python相对于当前目录,获取运行代码所在的父级目录?
python相对于当前目录,获取运行代码所在的父级目录?原创 2023-04-12 10:08:29 · 267 阅读 · 0 评论 -
数据结构与算法总结整理(超级全的哦!)
数据结构与算法基础大O表示法内存工作原理递归NP完全问题数据结构数组链表混合结构栈队列散列表图集合二叉树算法二分查找选择排序快速排序广度优先狄克斯特拉算法近似算法K最近邻算法策略D&C分而治之贪婪算法动态规划基础大O表示法内存工作原理递归NP完全问题数据结构数组链表混合结构栈队列散列表图集合二叉树算法二分查找选择排序快速排序广度优先狄克斯特拉算法近似算法K最近邻算法策略D&C分而治之贪婪算法动态规划...原创 2023-02-19 16:17:02 · 570 阅读 · 0 评论 -
Python如何使用HanNLP工具
使用pycharm调用HanNLP工具完成对文本的分词、自动摘要、关键词提取等任务原创 2022-11-16 15:07:02 · 1791 阅读 · 0 评论 -
我所了解的bert模型整理!!
文章目录BERT是什么语言模型Mask机制BERTBert vs TransformerBert Model InputBert Model OutputBert Masked Language ModelBert Next Sentence PredictionBert with Feature ExtractionBert应用场景Bert-GPT-ELMoELMoEMLo的俩种方式GPTvan...原创 2020-02-05 14:09:47 · 773 阅读 · 0 评论 -
Transformer
文章目录Self Attention(Transformer)TransformerTransformer整体结构Encoder-Decoder结构self-Attention的计算Q-K-V的计算Attention的计算Multi-Headed-Attention的计算Positional EncodingLayerNorm&ResidualsDecoder结构Decoder中的self...原创 2020-02-03 22:59:47 · 762 阅读 · 0 评论 -
Seq2Seq Attention
文章目录什么是Attention举个例子:为什么需要Attention?Attention 的3大优点Seq2Seq Attention计算过程什么是AttentionAttention(注意力机制)是一种机制,可以应用到许多不同的模型中,像CNN、RNN、seq2seq等。Attention通过权重给模型赋予了区分辨别的能力,从而抽取出更加关键及重要的信息,使模型做出更加准确的判断,同时不...原创 2020-02-02 17:33:29 · 639 阅读 · 0 评论 -
Seq2Seq
文章目录EmbeddingWord Embedding词向量---One-HotOne-Hot骤如下:One-hot表示文本信息的缺点:EmbeddingEmbedding能够用低维向量对物体进行编码还能保留其含义的特点非常适合深度学习。在传统机器学习模型构建过程中,我们经常使用one hot encoding对离散特征,特别是id类特征进行编码,但由于one hot encoding的维度...原创 2020-01-29 18:00:10 · 672 阅读 · 0 评论 -
FastText和cw2vec
文章目录什么是FastTextFastTextFastText与Word2Vec的不同FastText优点:--------------------------------------cw2vec什么是FastText英语单词通常有其内部结构和形成⽅式。例如,我们可以从“dog”“dogs”和“dogcatcher”的字⾯上推测它们的关系。这些词都有同⼀个词根“dog”,但使⽤不同的后缀来改...原创 2020-01-28 15:34:57 · 339 阅读 · 0 评论 -
自然语言处理——word2vec
文章目录EmbeddingWord Embedding词向量词向量---One-HotOne-Hot骤如下:One-hot表示文本信息的缺点:词向量---词袋法词袋模型同样有一下缺点:词向量---TF-IDF词向量---主题模型词向量_Word2VecSkip-gram 和 CBOW 的简单情形CBOWSkip-gram优化方法Word2Vec存在的问题词嵌入为何不采用one-hot向量词向量-C...原创 2020-01-28 13:47:02 · 1314 阅读 · 0 评论