【数学】微积分的大用处

前言

前段时间跟队里某些同学一样学习了微积分,然后想练练手,练完手就出现了这篇文章…

概念

微积分(数学概念)_百度百科

球的体积

球的半径为 r r r,半径函数为 R ( x ) = r 2 − x 2 R(x)=\sqrt{r^{2}-x^{2}} R(x)=r2x2 ,则体积为

V = ∫ − r r π [ R ( x ) ] 2 d x V=\int^{r}_{-r}\pi[R(x)]^{2}dx V=rrπ[R(x)]2dx

     = ∫ − r r π [ r 2 − x 2 ] 2 d x \ \ \ \ =\int^{r}_{-r}\pi[\sqrt{r^{2}-x^{2}}]^{2}dx     =rrπ[r2x2 ]2dx

     = ∫ − r r π [ r 2 − x 2 ] d x \ \ \ \ =\int^{r}_{-r}\pi[r^{2}-x^{2}]dx     =rrπ[r2x2]dx

     = π ∫ − r r [ r 2 − x 2 ] d x \ \ \ \ =\pi\int^{r}_{-r}[r^{2}-x^{2}]dx     =πrr[r2x2]dx

     = π [ r 2 x − x 3 3 ] − r r \ \ \ \ =\pi[r^{2}x-\frac{x^{3}}{3}]^{r}_{-r}     =π[r2x3x3]rr

     = π [ ( r 3 − r 3 3 ) − ( − r 3 + r 3 3 ) ] \ \ \ \ =\pi[(r^{3}-\frac{r^{3}}{3})-(-r^{3}+\frac{r^3}{3})]     =π[(r33r3)(r3+3r3)]

     = π [ r 3 − r 3 3 + r 3 − r 3 3 ] \ \ \ \ =\pi[r^{3}-\frac{r^3}{3}+r^{3}-\frac{r^{3}}{3}]     =π[r33r3+r33r3]

     = 4 3 π r 3 \ \ \ \ =\frac{4}{3}\pi r^{3}     =34πr3

微积分:球的体积

圆锥的体积

圆锥的高为 h h h,底面半径为 r r r,半径函数为 R ( x ) = t a n ( α ) × x = r h × x R(x)=tan(\alpha)\times x=\frac{r}{h}\times x R(x)=tan(α)×x=hr×x,则体积为

V = ∫ 0 h π [ R ( x ) ] 2 d x V=\int^{h}_{0}\pi[R(x)]^{2}dx V=0hπ[R(x)]2dx

     = ∫ 0 h [ π × r 2 h 2 × x 2 ] d x \ \ \ \ =\int^{h}_{0}[\pi\times\frac{r^{2}}{h^{2}}\times x^{2}]dx     =0h[π×h2r2×x2]dx

     = π r 2 h 2 × ∫ 0 h [ x 2 ] d x \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times\int^{h}_{0}[x^{2}]dx     =πh2r2×0h[x2]dx

     = π r 2 h 2 × [ x 3 3 ] 0 h \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times[\frac{x^{3}}{3}]^{h}_{0}     =πh2r2×[3x3]0h

     = π r 2 h 2 × h 3 3 \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times\frac{h^{3}}{3}     =πh2r2×3h3

     = 1 3 π r 2 h \ \ \ \ =\frac{1}{3}\pi r^{2}h     =31πr2h

微积分:圆锥的体积

正三棱锥的体积

先求面积函数(等边三角形的边长和面积的关系),看下图:
等边三角形的边长
设一个等边三角形的边长为 a a a,则其面积为
S = 1 2 a h = 1 2 a × a 2 − ( a 2 ) 2 = 1 2 a × a 2 − a 2 4 = 1 2 a × 3 a 2 4 = 1 2 a × 3 a 2 = 3 a 2 4 S=\frac{1}{2}ah=\frac{1}{2}a\times\sqrt{a^{2}-(\frac{a}{2})^{2}}=\frac{1}{2}a\times\sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{1}{2}a\times\sqrt{\frac{3a^{2}}{4}}=\frac{1}{2}a\times\frac{\sqrt{3}a}{2}=\frac{\sqrt{3}a^{2}}{4} S=21ah=21a×a2(2a)2 =21a×a24a2 =21a×43a2 =21a×23 a=43 a2
所以,面积函数 S ( x ) = 3 ( a h x ) 2 4 S(x)=\frac{\sqrt{3}(\frac{a}{h}x)^{2}}{4} S(x)=43 (hax)2,三棱锥的高为 h h h,底面边长为 r r r,则体积为

V = ∫ 0 h S ( x ) d x V=\int^{h}_{0}S(x)dx V=0hS(x)dx

     = ∫ 0 h [ 3 ( a h x ) 2 4 ] d x \ \ \ \ =\int^{h}_{0}[\frac{\sqrt{3}(\frac{a}{h}x)^{2}}{4}]dx     =0h[43 (hax)2]dx

     = ∫ 0 h 3 a 2 4 h 2 × x 2 \ \ \ \ =\int^{h}_{0}\frac{\sqrt{3}a^{2}}{4h^{2}}\times x^{2}     =0h4h23 a2×x2

     = 3 a 2 4 h 2 ∫ 0 h x 2 d x \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}\int^{h}_{0}x^{2}dx     =4h23 a20hx2dx

     = 3 a 2 4 h 2 [ x 3 3 ] 0 h \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}[\frac{x^{3}}{3}]^{h}_{0}     =4h23 a2[3x3]0h

     = 3 a 2 4 h 2 × h 3 3 \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}\times \frac{h^{3}}{3}     =4h23 a2×3h3

     = 3 12 a 2 h \ \ \ \ =\frac{\sqrt{3}}{12}a^{2}h     =123 a2h

微积分:正三棱锥的体积
观察得,圆锥的体积等于等底等高的圆柱的体积的 1 3 \frac{1}{3} 31,三棱锥的体积也等于等底等高的三棱柱的体积的 1 3 \frac{1}{3} 31,所以是否任意形状的锥体的体积都是与其等底等高的柱体的体积的 1 3 \frac{1}{3} 31呢?我们再推得四棱锥的体积公式观察结果。

正四棱锥的体积

正四棱锥的底面边长为 a a a,高为 h h h,面积公式 S ( x ) = ( a h x ) 2 S(x)=(\frac{a}{h}x)^2 S(x)=(hax)2则体积为

V = ∫ 0 h S ( x ) d x V=\int^{h}_{0}S(x)dx V=0hS(x)dx

     = ∫ 0 h ( a h x ) 2 d x \ \ \ \ =\int^{h}_{0}(\frac{a}{h}x)^{2}dx     =0h(hax)2dx

     = ∫ 0 h ( a 2 h 2 x 2 ) d x \ \ \ \ =\int^{h}_{0}(\frac{a^{2}}{h^{2}}x^{2})dx     =0h(h2a2x2)dx

     = a 2 h 2 ∫ 0 h x 2 d x \ \ \ \ =\frac{a^{2}}{h^{2}}\int^{h}_{0}x^{2}dx     =h2a20hx2dx

     = a 2 h 2 [ x 3 3 ] 0 h \ \ \ \ =\frac{a^{2}}{h^{2}}[\frac{x^{3}}{3}]^{h}_{0}     =h2a2[3x3]0h

     = a 2 h 2 × h 3 3 \ \ \ \ =\frac{a^{2}}{h^{2}}\times\frac{h^{3}}{3}     =h2a2×3h3

     = 1 3 a 2 h \ \ \ \ =\frac{1}{3}a^{2}h     =31a2h

微积分:正四棱锥的体积
很明显,正四棱锥的体积也等于等底等高的正四棱柱(长方体)的体积的 1 3 \frac{1}{3} 31,那么,我们能否得到任意形状的锥体的体积都是与其等底等高的柱体的体积的 1 3 \frac{1}{3} 31呢?

锥体的体积

微积分:锥体的体积
这是个自己画的小小的草图(为了方便,选择圆锥作图,但其实底面可以是任意形状),帮助理解本部分的内容。
在图中,从锥体顶点作一条垂直于锥体底面的线段,长度为 h h h(即高),平行于线段上的每一点 x x x的高度的面积为 f ( x ) f(x) f(x)。根据相似(面积比等于周长比的平方)可得:

f ( x ) S = ( x h ) 2 \frac{f(x)}{S}=(\frac{x}{h})^{2} Sf(x)=(hx)2 S S S为底面积,相当于 f ( h ) f(h) f(h)),

f ( x ) = ( x h ) 2 × S f(x)=(\frac{x}{h})^{2}\times S f(x)=(hx)2×S

∴ V = ∫ 0 h f ( x ) d x \therefore V=\int^{h}_{0}f(x)dx V=0hf(x)dx

         = ∫ 0 h ( x h ) 2 × S d x \ \ \ \ \ \ \ \ =\int^{h}_{0}(\frac{x}{h})^{2}\times Sdx         =0h(hx)2×Sdx

         = ∫ 0 h x 2 × S h 2 d x \ \ \ \ \ \ \ \ =\int^{h}_{0}x^{2}\times\frac{S}{h^{2}}dx         =0hx2×h2Sdx

         = S h 2 ∫ 0 h x 2 d x \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}\int^{h}_{0}x^{2}dx         =h2S0hx2dx

         = S h 2 [ x 3 3 ] 0 h \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}[\frac{x^{3}}{3}]^{h}_{0}         =h2S[3x3]0h

         = S h 2 × h 3 3 \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}\times\frac{h^{3}}{3}         =h2S×3h3

         = 1 3 S h \ \ \ \ \ \ \ \ =\frac{1}{3}Sh         =31Sh

真的如此!我们得到了事实:任意形状的锥体的体积都是与其等底等高的柱体的体积的 1 3 \frac{1}{3} 31

尾声

现在,我们只需知道一个锥体的底面积与高,就可以求出其体积了。
既然我们已经自己推算出锥体的体积计算公式了。那么,就让我们朝着更高难度挑战吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值