前言
前段时间跟队里某些同学一样学习了微积分,然后想练练手,练完手就出现了这篇文章…
概念
球的体积
球的半径为 r r r,半径函数为 R ( x ) = r 2 − x 2 R(x)=\sqrt{r^{2}-x^{2}} R(x)=r2−x2,则体积为
V = ∫ − r r π [ R ( x ) ] 2 d x V=\int^{r}_{-r}\pi[R(x)]^{2}dx V=∫−rrπ[R(x)]2dx
= ∫ − r r π [ r 2 − x 2 ] 2 d x \ \ \ \ =\int^{r}_{-r}\pi[\sqrt{r^{2}-x^{2}}]^{2}dx =∫−rrπ[r2−x2]2dx
= ∫ − r r π [ r 2 − x 2 ] d x \ \ \ \ =\int^{r}_{-r}\pi[r^{2}-x^{2}]dx =∫−rrπ[r2−x2]dx
= π ∫ − r r [ r 2 − x 2 ] d x \ \ \ \ =\pi\int^{r}_{-r}[r^{2}-x^{2}]dx =π∫−rr[r2−x2]dx
= π [ r 2 x − x 3 3 ] − r r \ \ \ \ =\pi[r^{2}x-\frac{x^{3}}{3}]^{r}_{-r} =π[r2x−3x3]−rr
= π [ ( r 3 − r 3 3 ) − ( − r 3 + r 3 3 ) ] \ \ \ \ =\pi[(r^{3}-\frac{r^{3}}{3})-(-r^{3}+\frac{r^3}{3})] =π[(r3−3r3)−(−r3+3r3)]
= π [ r 3 − r 3 3 + r 3 − r 3 3 ] \ \ \ \ =\pi[r^{3}-\frac{r^3}{3}+r^{3}-\frac{r^{3}}{3}] =π[r3−3r3+r3−3r3]
= 4 3 π r 3 \ \ \ \ =\frac{4}{3}\pi r^{3} =34πr3
圆锥的体积
圆锥的高为 h h h,底面半径为 r r r,半径函数为 R ( x ) = t a n ( α ) × x = r h × x R(x)=tan(\alpha)\times x=\frac{r}{h}\times x R(x)=tan(α)×x=hr×x,则体积为
V = ∫ 0 h π [ R ( x ) ] 2 d x V=\int^{h}_{0}\pi[R(x)]^{2}dx V=∫0hπ[R(x)]2dx
= ∫ 0 h [ π × r 2 h 2 × x 2 ] d x \ \ \ \ =\int^{h}_{0}[\pi\times\frac{r^{2}}{h^{2}}\times x^{2}]dx =∫0h[π×h2r2×x2]dx
= π r 2 h 2 × ∫ 0 h [ x 2 ] d x \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times\int^{h}_{0}[x^{2}]dx =πh2r2×∫0h[x2]dx
= π r 2 h 2 × [ x 3 3 ] 0 h \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times[\frac{x^{3}}{3}]^{h}_{0} =πh2r2×[3x3]0h
= π r 2 h 2 × h 3 3 \ \ \ \ =\pi\frac{r^{2}}{h^{2}}\times\frac{h^{3}}{3} =πh2r2×3h3
= 1 3 π r 2 h \ \ \ \ =\frac{1}{3}\pi r^{2}h =31πr2h
正三棱锥的体积
先求面积函数(等边三角形的边长和面积的关系),看下图:
设一个等边三角形的边长为
a
a
a,则其面积为
S
=
1
2
a
h
=
1
2
a
×
a
2
−
(
a
2
)
2
=
1
2
a
×
a
2
−
a
2
4
=
1
2
a
×
3
a
2
4
=
1
2
a
×
3
a
2
=
3
a
2
4
S=\frac{1}{2}ah=\frac{1}{2}a\times\sqrt{a^{2}-(\frac{a}{2})^{2}}=\frac{1}{2}a\times\sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{1}{2}a\times\sqrt{\frac{3a^{2}}{4}}=\frac{1}{2}a\times\frac{\sqrt{3}a}{2}=\frac{\sqrt{3}a^{2}}{4}
S=21ah=21a×a2−(2a)2=21a×a2−4a2=21a×43a2=21a×23a=43a2
所以,面积函数
S
(
x
)
=
3
(
a
h
x
)
2
4
S(x)=\frac{\sqrt{3}(\frac{a}{h}x)^{2}}{4}
S(x)=43(hax)2,三棱锥的高为
h
h
h,底面边长为
r
r
r,则体积为
V = ∫ 0 h S ( x ) d x V=\int^{h}_{0}S(x)dx V=∫0hS(x)dx
= ∫ 0 h [ 3 ( a h x ) 2 4 ] d x \ \ \ \ =\int^{h}_{0}[\frac{\sqrt{3}(\frac{a}{h}x)^{2}}{4}]dx =∫0h[43(hax)2]dx
= ∫ 0 h 3 a 2 4 h 2 × x 2 \ \ \ \ =\int^{h}_{0}\frac{\sqrt{3}a^{2}}{4h^{2}}\times x^{2} =∫0h4h23a2×x2
= 3 a 2 4 h 2 ∫ 0 h x 2 d x \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}\int^{h}_{0}x^{2}dx =4h23a2∫0hx2dx
= 3 a 2 4 h 2 [ x 3 3 ] 0 h \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}[\frac{x^{3}}{3}]^{h}_{0} =4h23a2[3x3]0h
= 3 a 2 4 h 2 × h 3 3 \ \ \ \ =\frac{\sqrt{3}a^{2}}{4h^{2}}\times \frac{h^{3}}{3} =4h23a2×3h3
= 3 12 a 2 h \ \ \ \ =\frac{\sqrt{3}}{12}a^{2}h =123a2h
观察得,圆锥的体积等于等底等高的圆柱的体积的
1
3
\frac{1}{3}
31,三棱锥的体积也等于等底等高的三棱柱的体积的
1
3
\frac{1}{3}
31,所以是否任意形状的锥体的体积都是与其等底等高的柱体的体积的
1
3
\frac{1}{3}
31呢?我们再推得四棱锥的体积公式观察结果。
正四棱锥的体积
正四棱锥的底面边长为 a a a,高为 h h h,面积公式 S ( x ) = ( a h x ) 2 S(x)=(\frac{a}{h}x)^2 S(x)=(hax)2则体积为
V = ∫ 0 h S ( x ) d x V=\int^{h}_{0}S(x)dx V=∫0hS(x)dx
= ∫ 0 h ( a h x ) 2 d x \ \ \ \ =\int^{h}_{0}(\frac{a}{h}x)^{2}dx =∫0h(hax)2dx
= ∫ 0 h ( a 2 h 2 x 2 ) d x \ \ \ \ =\int^{h}_{0}(\frac{a^{2}}{h^{2}}x^{2})dx =∫0h(h2a2x2)dx
= a 2 h 2 ∫ 0 h x 2 d x \ \ \ \ =\frac{a^{2}}{h^{2}}\int^{h}_{0}x^{2}dx =h2a2∫0hx2dx
= a 2 h 2 [ x 3 3 ] 0 h \ \ \ \ =\frac{a^{2}}{h^{2}}[\frac{x^{3}}{3}]^{h}_{0} =h2a2[3x3]0h
= a 2 h 2 × h 3 3 \ \ \ \ =\frac{a^{2}}{h^{2}}\times\frac{h^{3}}{3} =h2a2×3h3
= 1 3 a 2 h \ \ \ \ =\frac{1}{3}a^{2}h =31a2h
很明显,正四棱锥的体积也等于等底等高的正四棱柱(长方体)的体积的
1
3
\frac{1}{3}
31,那么,我们能否得到任意形状的锥体的体积都是与其等底等高的柱体的体积的
1
3
\frac{1}{3}
31呢?
锥体的体积
这是个自己画的小小的草图(为了方便,选择圆锥作图,但其实底面可以是任意形状),帮助理解本部分的内容。
在图中,从锥体顶点作一条垂直于锥体底面的线段,长度为
h
h
h(即高),平行于线段上的每一点
x
x
x的高度的面积为
f
(
x
)
f(x)
f(x)。根据相似(面积比等于周长比的平方)可得:
f ( x ) S = ( x h ) 2 \frac{f(x)}{S}=(\frac{x}{h})^{2} Sf(x)=(hx)2( S S S为底面积,相当于 f ( h ) f(h) f(h)),
即 f ( x ) = ( x h ) 2 × S f(x)=(\frac{x}{h})^{2}\times S f(x)=(hx)2×S。
∴ V = ∫ 0 h f ( x ) d x \therefore V=\int^{h}_{0}f(x)dx ∴V=∫0hf(x)dx
= ∫ 0 h ( x h ) 2 × S d x \ \ \ \ \ \ \ \ =\int^{h}_{0}(\frac{x}{h})^{2}\times Sdx =∫0h(hx)2×Sdx
= ∫ 0 h x 2 × S h 2 d x \ \ \ \ \ \ \ \ =\int^{h}_{0}x^{2}\times\frac{S}{h^{2}}dx =∫0hx2×h2Sdx
= S h 2 ∫ 0 h x 2 d x \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}\int^{h}_{0}x^{2}dx =h2S∫0hx2dx
= S h 2 [ x 3 3 ] 0 h \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}[\frac{x^{3}}{3}]^{h}_{0} =h2S[3x3]0h
= S h 2 × h 3 3 \ \ \ \ \ \ \ \ =\frac{S}{h^{2}}\times\frac{h^{3}}{3} =h2S×3h3
= 1 3 S h \ \ \ \ \ \ \ \ =\frac{1}{3}Sh =31Sh
真的如此!我们得到了事实:任意形状的锥体的体积都是与其等底等高的柱体的体积的 1 3 \frac{1}{3} 31!
尾声
现在,我们只需知道一个锥体的底面积与高,就可以求出其体积了。
既然我们已经自己推算出锥体的体积计算公式了。那么,就让我们朝着更高难度挑战吧!