Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
代码如下:
#include<iostream>
#include<cstring>
using namespace std;
int n,k;
char grid[8][8];
int col[8]; //表示列访问的状态
int ans;
void dfs(int now,int knum){
for(int i=0;i<n;i++){
if(grid[now][i]=='#'&&col[i]==0){
if(knum==1)
ans++;
else{
col[i]=1;
for(int j=now+1;j<=n-(knum-1);j++)
dfs(j,knum-1);
col[i]=0; //回溯时,状态复原
}
}
}
}
int main(){
while(cin>>n>>k){
if(n==-1&&k==-1)
break;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>grid[i][j];
ans=0;
memset(col,0,sizeof(col));
for(int i=0;i<=n-k;i++){ //共有n行,要放k个棋子,必须要在n-k行之前开始放置
dfs(i,k);
}
cout<<ans<<endl;
}
return 0;
}