目标检测
_yuki_
一路打怪升级,直至见到大魔王
展开
-
目标检测 AP计算 (回顾)
基本概念P-R曲线中,P为图中precision,即精准度,R为图中recall,即召回率。Example下面通过具体例子说明。首先用训练好的模型得到所有测试样本的confidence score,每一类(如car)的confidence score保存到一个文件中(如comp1_cls_test_car.txt)。假设共有20个测试样本,每个的id,confidence score和ground truth label如下:ground truth lab...原创 2020-11-13 14:21:25 · 2440 阅读 · 0 评论 -
目标检测 Backbone、Neck、Detection head
目标检测网络的两个重要部分:Backbone和Detection head。一、Backbone通常,为了实现从图像中检测目标的位置和类别,我们会先从图像中提取出些必要的特征信息,比如HOG特征,然后利用这些特征去实现定位和分类。而在在深度学习这一块,backbone部分的网络就是负责从图像中提取特征,当然,这里提出的是什么样的特征,我们是无从得知的,毕竟深度学习的“黑盒子”特性至今还无法真正将其面纱揭开。那么,如何去设计一个backbone去提取图像中的特征呢?从某种意义上来说,如何设计好原创 2020-10-30 09:57:29 · 10662 阅读 · 3 评论