Spring AI教程(三):如何使用Spring AI进行实际项目开发

Spring AI教程(三):如何使用Spring AI进行实际项目开发

在前两篇文章中,我们介绍了Spring AI的基本概念和核心功能。这篇文章将重点介绍如何在实际项目中使用Spring AI,并提供详细的代码示例,帮助你快速上手。

准备工作

在开始之前,请确保你已经设置好了Spring Boot项目,并添加了Spring AI相关的依赖。你可以在pom.xml文件中添加以下依赖:

<dependency>
    <groupId>com.example</groupId>
    <artifactId>spring-ai</artifactId>
    <version>1.0.0</version>
</dependency>

配置Spring AI

首先,我们需要配置Spring AI,以便连接到我们选择的AI模型提供商和向量数据库。在application.properties文件中添加以下配置:

spring.ai.provider=openai
spring.ai.api-key=YOUR_OPENAI_API_KEY

spring.ai.vector-database.provider=redis
spring.ai.vector-database.url=redis://localhost:6379

创建AI服务

接下来,我们将创建一个服务类,用于与AI模型进行交互。以下是一个简单的聊天服务示例:

import org.springframework.stereotype.Service;
import com.example.springai.OpenAiChatService;

@Service
public class ChatService {

    private final OpenAiChatService openAiChatService;

    public ChatService(OpenAiChatService openAiChatService) {
        this.openAiChatService = openAiChatService;
    }

    public String chat(String prompt) {
        return openAiChatService.chat(prompt);
    }
}

创建控制器

我们还需要创建一个控制器,用于处理HTTP请求并调用我们的服务。以下是一个简单的控制器示例:

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class ChatController {

    private final ChatService chatService;

    public ChatController(ChatService chatService) {
        this.chatService = chatService;
    }

    @GetMapping("/chat")
    public String chat(@RequestParam String prompt) {
        return chatService.chat(prompt);
    }
}

使用向量数据库

除了与AI模型交互,Spring AI还支持向量数据库,用于存储和检索向量数据。以下是一个使用Redis向量数据库的示例:

import org.springframework.stereotype.Service;
import com.example.springai.VectorDatabaseService;
import java.util.List;

@Service
public class VectorService {

    private final VectorDatabaseService vectorDatabaseService;

    public VectorService(VectorDatabaseService vectorDatabaseService) {
        this.vectorDatabaseService = vectorDatabaseService;
    }

    public void saveVector(String id, List<Float> vector) {
        vectorDatabaseService.saveVector(id, vector);
    }

    public List<Float> getVector(String id) {
        return vectorDatabaseService.getVector(id);
    }
}

创建向量控制器

我们还需要一个控制器来处理向量数据的存储和检索:

import org.springframework.web.bind.annotation.*;
import java.util.List;

@RestController
public class VectorController {

    private final VectorService vectorService;

    public VectorController(VectorService vectorService) {
        this.vectorService = vectorService;
    }

    @PostMapping("/vector")
    public void saveVector(@RequestParam String id, @RequestBody List<Float> vector) {
        vectorService.saveVector(id, vector);
    }

    @GetMapping("/vector")
    public List<Float> getVector(@RequestParam String id) {
        return vectorService.getVector(id);
    }
}

完整示例

以下是一个完整的Spring Boot应用程序示例,展示了如何使用Spring AI进行实际项目开发:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringAiApplication {

    public static void main(String[] args) {
        SpringApplication.run(SpringAiApplication.class, args);
    }
}

结论

通过上述示例,我们展示了如何在实际项目中使用Spring AI,包括配置AI模型提供商和向量数据库、创建服务和控制器等。希望这些示例能帮助你快速上手Spring AI,并在你的项目中实现强大的AI功能。

下一篇文章中,我们将探讨更多高级功能和使用技巧,帮助你进一步优化和扩展你的AI应用。

Spring Boot项目使用百度AI的车牌识别功能,可以通过调用百度AI提供的RESTful API来实现。下面是一个示例代码,可以帮助你完成在Spring Boot项目中调用百度AI车牌识别的功能: 1. 引入依赖 在pom.xml文件中添加以下依赖: ```xml <dependency> <groupId>com.baidu.aip</groupId> <artifactId>java-sdk</artifactId> <version>4.15.3</version> </dependency> ``` 2. 创建配置类 在Spring Boot项目中创建一个配置类,用于初始化百度AI的相关配置信息,如API Key、Secret Key等。代码如下: ```java @Configuration public class BaiduAIConfig { @Value("${baidu.ai.app-id}") private String appId; @Value("${baidu.ai.api-key}") private String apiKey; @Value("${baidu.ai.secret-key}") private String secretKey; @Bean public AipOcr aipOcr() { // 初始化AipOcr AipOcr aipOcr = new AipOcr(appId, apiKey, secretKey); // 设置连接超时时间和读取超时时间 aipOcr.setConnectionTimeoutInMillis(2000); aipOcr.setSocketTimeoutInMillis(60000); return aipOcr; } } ``` 在上面的代码中,我们使用了@Configuration注解来将该类声明为Spring的配置类,使用@Value注解来注入配置文件中的API Key、Secret Key等信息。我们创建了一个名为aipOcr的Bean,用于初始化AipOcr对象。使用setConnectionTimeoutInMillis()和setSocketTimeoutInMillis()方法设置了连接超时时间和读取超时时间。 3. 创建Controller 在Spring Boot项目中创建一个Controller,用于接收上传的图片,并调用百度AI的车牌识别API进行识别。代码如下: ```java @RestController @RequestMapping("/car") public class CarPlateController { @Autowired private AipOcr aipOcr; @PostMapping("/plate") public String carPlateRecognition(@RequestParam("image") MultipartFile image) throws Exception { // 车牌识别 byte[] bytes = image.getBytes(); HashMap<String, String> options = new HashMap<>(); JSONObject result = aipOcr.licensePlate(bytes, options); if (result != null && result.has("words_result")) { JSONObject wordsResult = result.getJSONObject("words_result"); String number = wordsResult.getString("number"); return "车牌号码:" + number; } else { return "识别失败"; } } } ``` 在上面的代码中,我们使用了@RestController注解来声明该类为一个RESTful风格的Controller,使用@Autowired注解来注入AipOcr对象。我们创建了一个名为carPlateRecognition的方法,用于接收上传的图片,并调用百度AI的车牌识别API进行识别。我们使用MultipartFile对象来接收上传的图片,使用licensePlate()方法调用百度AI的车牌识别API,最后解析结果得到车牌号码。 4. 测试 在浏览器或Postman等工具中发送POST请求,请求路径为/car/plate,上传一张包含车牌的图片,即可测试百度AI的车牌识别功能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿里渣渣java研发组-群主

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值