大家好,我是程序员可乐,专注于Spring生态,给大家带来更便捷的开发体验。
wechat 公众号 : 【全栈程序员可乐】
在上篇中,我们学习了如何将Ollama本地AI整合到Spring项目中,这篇,我们主要讲解Spring AI的各种操作,使其能够成为一个真正意义上的AI。
AI对话
AI对话可以说是最普遍的AI需求,在上篇中我们其实已经实现了一个小DEMO,但是真正的对话远远不止这些…
如何给AI设定角色
不同领域的AI都有不同的回答方式,比如医疗领域的AI就应该回答医疗相关方面的问题,如果你问它代码问题,它不应该告诉你,而是告诉你它不会。
现在,我们就来实现下这个需求:
@RestController
public class ChatController {
@Autowired
private ChatModel chatModel;
@GetMapping("/ai/generate")
public String generate(@RequestParam(value = "message") String message) {
SystemMessage systemMessage = new SystemMessage("请忘记你是一个AI的身份,现在你是一个医疗领域的专家,精通内外科的各种疑难杂症");
UserMessage userMessage = new UserMessage(message);
return chatModel.call(systemMessage, userMessage);
}
}
我们来测试一下:
定义了SystemMessage之后,AI会严格遵守你的要求进行对话。
如何持续对话
@RestController
public class ChatController {
@Autowired
private ChatModel chatModel;
private final List<Message> messageList = new ArrayList<>() {
{
add(new SystemMessage("你是一个计算器,请帮我解答计算问题"));
}
};
@GetMapping("/ai/generate")
public String generate(@RequestParam(value = "message") String message) {
UserMessage userMessage = new UserMessage(message);
messageList.add(userMessage);
String call = chatModel.call(messageList.toArray(new Message[0]));
AssistantMessage assistantMessage = new AssistantMessage(call);
messageList.add(assistantMessage);
return call;
}
}
基本逻辑就是我们只需要将每个消息存储到一个集合中,在调用call()
方法的时候将整个集合转为数组传递,AI会联系上下文进行回答:
可以发现,我发送了两次请求,第二次的请求是基于第一次的请求进行回答的,也就是说,AI能够根据联系上下文来回答您输入的问题。
至此,其实一个简单的固定领域的聊天AI就已经搭建完成了,我们需要做的其实就是给AI设定角色,即定义SystemMessage,然后将用户的问题和AI的回答全都存储起来,调用的时候一并放到call()
方法中即可。
在正式业务中,聊天消息都会存放到数据库中,而我们所需要做的,就是将消息从数据库中查询出来,然后按照事例放入参数中即可。
如何输出固定格式
有时候,AI不仅仅只以聊天的形式出现,很多场景下我们需要让AI以固定的格式输出,比如JSON,这样有利于程序对AI的回答进行业务解析,以达到我们的产品需求。
比如,现在有这样一个需求,在一款聊天软件中,系统需要根据用户输入的信息判断用户当前的情绪,然后在用户页面自动展示一些情绪动画,微信其实就有类似的功能,比如我们发送生日快乐的时候,聊天界面会散落很多蛋糕(当然微信用的应该是关键词提取)
那我们就来做一下这个需求:
@RestController
public class ChatController {
@Autowired
private ChatModel chatModel;
@GetMapping("/ai/generate")
public Mood generate(@RequestParam(value = "message") String message) {
BeanOutputConverter<Mood> beanOutputConverter =
new BeanOutputConverter<>(Mood.class);
String format = beanOutputConverter.getFormat();
String template = """
你是一个心情分析器,可以根据用户的语言分析用户当前的心情,且按照指定格式输出,输出格式规范如下:{format},
其中,type可选值有三个,分别是happy,sad和angry,level是0~10的整数,
下面是用户的语言:{message}。
""";
Generation generation = chatModel.call(
new PromptTemplate(template, Map.of("message", message, "format", format)).create()).getResult();
Mood mood = beanOutputConverter.convert(generation.getOutput().getContent());
return mood;
}
}
在本段代码中,我们先限制让AI用我们的定义的类格式进行输出,然后将AI的输出内容通过Bean转化器转化为我们的类,最终成为一个我们所需要的实体对象。
测试结果如下:
这样,当用户在使用我们的产品进行对话的过程中,可以通过分析用户的语言文字来判断用户当前的心情指数,前端通过该指数做一些动画效果,产品的高级感一下子就提升了呢~
写在最后
关于AI的探讨其实远不止这些,AI不止于文本的输出,还包括了图片、视频、音频等媒体文件的输出,同时也能分析媒体的内容并给出分析,AI的强大远超你的想象,各位勇士们根据自己的兴趣去探索AI领域吧~