【论文阅读笔记】Deep Neural Network Compression with Single and Multiple Level Quantization

全文概括

  本文是《Quantized Convolution Neural Networks for Mobile Devices》和《Incremental Network Quantization:Towards Lossless CNN with Low-Precision Weights》的思想结合。参考了前者的分层量化k-means聚类共享权值,参考了后者的INQ思想,即同一层分块量化

  在此文中,分层就是depth level,分块就是width level

  SLQ(Single-Level network Quantization)利用参数的分布来改善 width level (与INQ比,就多了一个参数聚类&权值共享的过程,效果和INQ差不多)。在 depth level ,用增量层次量化的方法,来补偿前面层数的量化损失(作者的想法是:对于极端小的bit来说,比如2-bit,量化的损失会很大,可能每层都同时量化会不好恢复,作者就想分层量化。但是这种量化方法的后果是进一步加剧INQ本就需要recover的re-train难度,最后的结果并不比INQ好。作者并未与INQ对比,但是其展示在CIFAR-10数据集上的ResNet-20上,MLQ比基线低了 1.68 % 1.68\% 1.68%;但INQ的ResNet-18,不知道是不是在ImageNet上,比基线低了 1.56 % 1.56\% 1.56%。但对比INQ的好处在于用了权值共享,暂时不了解权值共享带来的计算优势。

在这里插入图片描述

量化步骤

  1. k-means聚类:将参数用k-means算法聚成k类簇
  2. weight partition:依据每个簇的量化loss,将簇分为两组(待量化组和re-train组)
  3. weight share:将待量化组的每个簇用中心点作为权值共享值
  4. re-train剩下的参数。
    在这里插入图片描述

Intorduction

  对于hight-bit,使用 single-level 量化方法对于极端小的bit,使用 multi-level 量化方法。

  SLQ和MLQ都由四个步骤组成:clustering,loss based partition,weight-sharing,re-training
  SLQ和MLQ的主要区别在于,在基于loss的划分权重阶段,对于SLQ只划分簇,而对于MLQ,划分簇和层,所以SLQ可以认为是一种特殊的MLQ。
  将参数用k-means算法聚成k类簇,然后依据每个簇的量化loss,将簇分为两组(待量化组和re-train组),将待量化组的每个簇用中心点作为权值共享值,re-train剩下的参数。
在这里插入图片描述


Single-level Quantization

Cluster

  参数聚类成簇,是该方法比INQ较好的一点,是 data-driven 的表现。这应该能更轻松控制量化损失,即恢复准确度更容易些。

Loss based Partition

  不同于INQ先量化更大值的参数(基于pruning的灵感),该方法使用基于量化损失的参数划分,量化损失大的簇先被量化(大概是觉得量化损失小的,比较容易用于恢复精度,即变化幅度小)。【量化损失应该是直接floating point 和 fixed point的差】

Weight-sharing

  将量化的参数,以簇为单位,簇以中心点共享权值。


Multi-Level Quantization

  不同于SLQ一下把每层的待量化层都量化了,MLQ逐层量化待量化层。
  MLQ的k-means聚类方法的 k = 3 k=3 k=3。将影响网络效果大的两个簇称为Boundaries,将影响最小的簇称为

在这里插入图片描述

在这里插入图片描述


Experiment Results

CIFAR-10数据集
在这里插入图片描述
  这结果显示,好像不如INQ在ImageNet数据集上,对ResNet-18的提升。

ImageNet数据集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
MLQ
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值