HK-O1aw:HKGAI 与北大联合推出全球首个法律推理大模型

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. HK-O1aw 是香港生成式 AI 研发中心 (HKGAI) 和北京大学对齐团队 (PKU-Alignment Team) 合作推出的全球首个慢思考范式法律推理大模型。
  2. 该模型在合同法、消费者权益保护法等多个法律领域表现出色,提供逻辑严密的法律意见和咨询服务。
  3. HK-O1aw 基于 LLaMA-3.1-8B 模型和 O1aw-Dataset 数据集,支持慢思考和链式推理,处理复杂的法律问题。

正文(附运行示例)

HK-O1aw 是什么

在这里插入图片描述

HK-O1aw 是香港生成式 AI 研发中心 (HKGAI) 和北京大学对齐团队 (PKU-Alignment Team) 合作推出的全球首个慢思考范式法律推理大模型。该模型在合同法、消费者权益保护法等多个法律领域表现出色,能深入分析复杂法律文本和案例,提供逻辑严密的法律意见。模型采用 O1 风格数据集和训练,侧重慢思考和链式推理,应对法律领域的复杂性。

HK-O1aw 的主要功能

  • 法律推理与咨询:HK-O1aw 能处理各种法律咨询,提供基于法律条文和案例的推理和建议。
  • 案例分析:模型能分析具体的法律案例,提供深入的法律分析和可能的法律后果。
  • 法律知识解答:针对法律概念和原则,HK-O1aw 能提供详细的解释和讨论。
  • 消费者权益保护:在消费者权益保护领域,模型提供如何维权的指导和建议。
  • 商业调解与仲裁分析:HK-O1aw 能分析商业调解和仲裁的必要性、优点及适用性。
  • 法律文本分析:模型能深入分析复杂的法律文本,提供逻辑缜密的法律意见。
  • 法律教育辅助:对于法学院学生和法律专业人士,HK-O1aw 作为一个学习和研究工具。

HK-O1aw 的技术原理

  • O1 风格训练:HK-O1aw 基于类似于 OpenAI 的 O1 模型的训练方式,侧重于慢思考(slow thinking)和链式推理(Chain of Thought, CoT),深入分析和推理法律问题。
  • 深度学习和神经网络:作为生成式 AI,HK-O1aw 基于深度学习技术,用大型神经网络处理和理解法律文本。
  • 数据集构建:HK-O1aw 的训练依赖于包含 15959 个“问题-思考-答案”三元组的高质量数据集,数据用简体中文呈现,用结构化的 JSON 格式存储。
  • 复杂性处理:模型必须处理包含专业术语和复杂逻辑结构的法律文本,要求模型具备深入的思考和推理能力。
  • 长链推理:为全面分析和判断复杂案件,HK-O1aw 支持更长的推理链条,确保全面覆盖案件的各个方面。

如何运行 HK-O1aw

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "HKAIR-Lab/HK-O1aw"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

user_prompt: str = '<|reserved_special_token_0|>{input}<|reserved_special_token_1|>\n'
infer_template = user_prompt + '<|reserved_special_token_2|>\n**'

prompt = "在物业买卖过程中,业主是否有义务将租赁详情完全披露给准买家?如果未能完全披露,可能会产生哪些法律后果?"
text = infer_template.format(input=prompt)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

资源

  1. 项目官网:https://github.com/HKAIR-Lab/HK-O1aw
  2. GitHub 仓库:https://github.com/HKAIR-Lab/HK-O1aw
  3. 模型库:https://huggingface.co/HKAIR-Lab/HK-O1aw
  4. 训练数据集:https://huggingface.co/datasets/HKAIR-Lab/HK-O1aw-SFT-16K
  5. arXiv 技术论文:https://arxiv.org/pdf/2410.06734

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值