VideoPainter:开源视频修复神器!双分支架构一键修复,对象身份永久在线

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎬 “4K大片救星!腾讯联合港中大发布视频修复核弹:长镜头0断裂+身份锁死,插件任你装”

大家好,我是蚝油菜花。你是否经历过——

  • 👉 修复10分钟视频,对象颜色/脸型每帧都在变
  • 👉 用传统工具处理长镜头,背景像碎玻璃拼接
  • 👉 想加个特效插件,发现框架根本不支持…

今天揭秘的 VideoPainter ,由腾讯ARC Lab与港中大等顶尖实验室联合打造,正在重定义视频修复:

🔥 双分支黑科技

  • 背景分支像「时间胶水」,256帧长镜头无缝衔接
  • 前景分支如「智能雕塑家」,靠文本指令就能修改对象
  • 独创ID重采样技术,确保人物/物品身份100%锁定

影视团队实测:处理4K素材速度提升3倍,插件市场已涌现20+特效工具。文末送保姆级教程+企业级私有化部署方案,点击看AI如何拯救你的废片库!

🚀 快速阅读

VideoPainter 是一个基于双分支架构的视频修复和编辑框架,专为处理任意长度视频设计。

  1. 核心功能:支持背景保留、前景生成、文本指导编辑和对象一致性维持。
  2. 技术原理:结合轻量级上下文编码器和预训练扩散模型,通过ID重采样技术确保长视频中对象的一致性。

VideoPainter 是什么

VideoPainter-edit-gallery-2

VideoPainter 是由香港中文大学、腾讯ARC Lab、东京大学、澳门大学等机构联合推出的视频修复和编辑框架,专门用于处理任意长度的视频内容。该框架基于双分支架构,结合轻量级上下文编码器和预训练的扩散模型,实现高效的背景保留和前景生成。

VideoPainter 支持插件式操作,用户可以根据需求灵活调整修复效果。此外,框架引入了 ID 重采样技术,能够在长视频中保持对象的一致性。VideoPainter 还构建了 VPData 和 VPBench,这是目前最大的视频修复数据集,包含超过 39 万段视频剪辑,为大规模训练和评估提供了支持。

VideoPainter 的主要功能

  • 任意长度的视频修复:处理从短片段到长视频的各种内容,修复被遮挡或损坏的部分。
  • 背景保留与前景生成:基于双分支架构,实现背景的精确保留和前景的高质量生成。
  • 文本指导的视频编辑:支持用文本指令进行视频编辑,如添加、删除、替换或修改视频中的对象。
  • 对象一致性维持:在长视频中保持对象的身份一致性,避免出现对象漂移或突变。
  • 插件式控制:支持与不同的扩散模型或LoRA(低秩适配)模型结合,实现多样化的视频生成和编辑需求。

VideoPainter 的技术原理

VideoPainter-method

  • 双分支架构
    • 背景分支:基于轻量级上下文编码器提取背景特征,注入到预训练的扩散模型中,确保背景的连贯性。
    • 前景分支:基于扩散模型的生成能力,根据文本提示生成前景内容,与背景特征结合,实现高质量的修复。
  • 轻量级上下文编码器:仅包含两层,占用主模型参数的6%,提取背景特征并以分组方式注入到扩散模型中。基于选择性特征融合,将背景特征注入到模型中,避免前景和背景信息混淆。
  • ID重采样技术:在训练时,增强目标区域的ID信息,提升模型对修复区域的感知能力。在推理时,将前一视频片段的修复区域特征与当前片段结合,确保长视频中对象的一致性。
  • 插件式控制:支持与不同的扩散模型或LoRA模型结合,用户根据需求选择合适的模型进行视频修复或编辑。兼容文本到视频(T2V)和图像到视频(I2V)扩散模型,进一步扩展应用范围。
  • 大规模数据集构建:用先进的视觉模型(如SAM2、Grounding DINO等),自动生成精确的分割掩码和密集的文本描述。构建VPData和VPBench,包含超过39万段视频剪辑,为大规模训练和评估提供支持。

如何运行 VideoPainter

1. 环境准备

克隆仓库并创建虚拟环境:

git clone https://github.com/TencentARC/VideoPainter.git
conda create -n videopainter python=3.10 -y
conda activate videopainter
pip install -r requirements.txt

2. 数据下载

下载 VPBench 和 VPData 数据集:

git lfs install
git clone https://huggingface.co/datasets/TencentARC/VPBench
mv VPBench data
cd data
unzip pexels.zip
unzip videovo.zip
unzip davis.zip
unzip video_inpainting.zip

3. 模型训练

运行训练脚本:

cd train
bash VideoPainter.sh

4. 推理与评估

运行推理脚本:

cd infer
bash inpaint.sh

运行评估脚本:

cd evaluate
bash eval_inpainting.sh

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值